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e Compactness

® Extra properties of R
® Right- and left-continuity

® Lim sup and lim inf
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Last time

Definition

Let (X, d) be a metric space. A subset A C X is called dense if A= X.

Definition

A metric space (X, d) is separable if it contains a countable dense subset.

R is separable because QQ is dense in R J
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Define loo = {(Xn)nen : Xn € R, sup,cy |Xa| < 00}, the space of bounded real valued
sequences. Endow /., with a metric induced by the supremum norm, namely
d((Xn)neN, (¥n)nen) = SUPLen |Xn — ¥n|. Then £ is not separable with respect to the
topology induced by this metric.

Note: this proof relies on content from the cardinality section. Specifically, Cantor's
theorem gives us that |A| < |P(A)| for any set A.
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Compactness
UL

Definition
Let (X, d) be a metric space and K C X.
A collection {U;};c; of open sets is called open cover of K if K C U;¢;U;.

The set K is called compact if for all open covers { U} there exists a finite subcover,
meaning there exists an n € N and {U;, ..., Up} C {U;}ies such that K C U, U;.
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Let S C X where (X, d) is a metric space. If S is finite, then it is compact. I

Proof.
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(0,1) is not compact.

Proof.
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Proposition

Let (X, d) be a metric space and take a non-empty subset K C X. The following
holds:

@ If X is compact and K is closed, then K is compact (i.e. closed subsets of
compact sets are compact).

® If K is compact, then K is closed.
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Proof. (1) If X is compact and K C X is closed, then K is compact
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(2) K € X compact = K is closed.
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Arbitrary compact metric spaces have some nice properties in general as the next
proposition shows.

A compact metric space (X, d) is complete and separable.

Also, just as we had a sequential characterization of the closure of a set in metric
spaces, we similarly have a sequential characterization of compactness.

Let (X, d) be a metric space. Then K C X is compact with respect to the metric
induced by d if and only if every sequence in K admits a subsequence converging to
some point in K.
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Compactness on R”

 Theorem (Heine-Borel Theorem)

Let K CR". Then K is compact with respect to the topology induced by the
Euclidean distance if and only if it is closed and bounded.
.

A corollary of the last two theorems is the Bolzano-Weierstrass theorem.

Corollary (Bolzano-Weierstrass)

Any bounded sequence in R" has a convergent subsequence.
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Proposition

Let (X, dx) and (Y, dy) be metric spaces. Suppose K C X is compact and let
f: K — Y be continuous. Then f(K) is compact.

Note: this is a generalization of the Extreme Value Theorem to metric spaces.

W

Recall from the set theory section:
Iff:-X—->Y:

@ACBCY=fYA)CFYB)and ACBC X = f(A) C f(B)
® 1(Ujc/A) = Ui f1(A;), where A; C YViel

© (Uic)A;) = Uieif(A;), where A; C XViel

0 ACX = ACf1f(A)

®@ BCY=f(fB)CB
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Extra properties of R J
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Right and left continuous

Recall: f: R — R is continuous at xg € R if for all € > 0 there exists a § > 0 such that

iﬁ(o —y| < & implies |f(x0) — f(y)| <.
Xo ~ DXL Kox S

Let f: R — R.

® f is left continuous at xg € R if for all € > 0 there exists a § > 0, such
|f(x0) — f(x)| < € whenever xg — § < x < xp.

® f is right continuous at xp € R if for all € > 0 there exists a § > 0, such
|f(x0) — f(x)| < € whenever xp < x < xp + 9.

We say that f is left continuous if it is left continuous at all points in the domain, and

similar for right continuous.
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Proposition

A function f: R — R is continuous if and only if it is left and right continuous.

Proof-

CNOo LIS
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Bounded sequences and monotone convergence

Definition

Let (xn)nen be a sequence in R. We call (x,)nen bounded if there exists an M > 0
such that |x,| < M for all n € N.

Theorem (Monotone convergence theorem)

(i) Suppose (xn)nen is an increasing sequence, i.e. x, < xp+1 for all n € N, and that
it is bounded (above). Then the sequence converges. Furthermore,
limp—s00 Xn = SUP,cr Xn, Where sup,cy Xp = sup{x, : n € N}.

(ii) Suppose (xn)neN is a decreasing sequence, i.e. x, > xp+1 for all n € N, which is
bounded (below). Then the sequence converges and
limp—00 Xn = infpen X, := inf{x, : n € N}
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e

Convention: supA = oo if A C R is not bounded above and inf A= —oc if A is not
bounded below.

If AC B C R is non-empty, then inf A < supA, supA <supB, and inf A > inf B.

The proof of this follows from the definition of greatest lower and least upper bound.
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Let (xn)nen be a sequence in R. We define the limit superior of (xp)nen as

limsup x, := lim sup x.
n—soo n—>00k2n

Similarly we define the limit inferior of (xn)nen as

liminf x, := lim inf x.
n—o0 n—o0 k>n
v
If the sequence (xp)nen is not bounded above, then limsup,_, . x, = co. Similarly, if
the sequence (x,)nen is not bounded below, then liminf,_,o x, = —o0.
2 . :
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Let (xn)nen be a sequence in R.

® The sequence of suprema, s, = sup,~, Xk, is decreasing and the sequence of
infima, i, = infx>, Xk, is increasing.

® The limit superior and the limit inferior of a bounded sequence always exist and
are finite.

Proof.
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Let (xn)nen be a sequence in R. Then the sequence converges to x € R if and only if
limsup,_, o Xn = X = liminf o0 Xp.

Proof in notes.
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We can extend this easily to a sequence of functions f,: X — R as follows:

Define f = limsup,_,., fn to be the function defined pointwise by
f(x) = limsup,_,(f(x)) and similar for the limit inferior.

There also exists a set theoretic version in terms of unions and intersections which you
will encounter in probability.
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