Module 6: Metric Spaces IV Operational math bootcamp

Emma Kroell

University of Toronto

July 20, 2023

Outline

- Compactness
- Extra properties of ${\mathbb R}$
 - Right- and left-continuity
 - Lim sup and lim inf

Last time

Definition

Let (X, d) be a metric space. A subset $A \subseteq X$ is called *dense* if $\overline{A} = X$.

Definition

A metric space (X, d) is separable if it contains a countable dense subset.

Example

 ${\mathbb R}$ is separable because ${\mathbb Q}$ is dense in ${\mathbb R}$

Example

Define $\ell_{\infty} = \{(x_n)_{n \in \mathbb{N}} : x_n \in \mathbb{R}, \sup_{n \in \mathbb{N}} |x_n| < \infty\}$, the space of bounded real valued sequences. Endow ℓ_{∞} with a metric induced by the supremum norm, namely $d((x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}) = \sup_{n \in \mathbb{N}} |x_n - y_n|$. Then ℓ_{∞} is **not separable** with respect to the topology induced by this metric.

Note: this proof relies on content from the cardinality section. Specifically, Cantor's theorem gives us that $|A| < |\mathcal{P}(A)|$ for any set A. Proof. For MEIN, define $e_n^M = \begin{cases} l & if n \in M \\ 0 & otherwise (sequence) \end{cases}$ If $M_{1}, M_{2} \in \mathbb{N}$ are non-empty and $M_{1} \neq M_{2}$, then $d((e^{M_{1}})_{n \in \mathbb{N}}, (e^{M_{2}})_{n \in \mathbb{N}}) = 1$. The open balls ratisfical Sciences B1/3 (1em) new), B1/3((em) new) are disjoint. July 20, 2023 4 / 28

Proof continued. Suppose in order to derive a contradiction that $\exists A \subseteq l^{\infty}$ that is dense & countable. A is dense => = (xn)nemelos and He>O, $B_{\mathcal{E}}((\chi_n)_{n\in \mathbb{N}}) \wedge A \neq \emptyset.$ The particular, for all $M \subseteq \mathbb{N}$, $\mathbb{B}_{1/3}((\mathbb{C}^n)_{\text{new}})$ \mathbb{P}_{4} . There are uncountedly many such M (P(IN) is uncountable), but live assumed A has countably many elements. Since the UNIVERSITY OF TORONTO balls are disjoint, this is a contradictor.

Compactness

Definition

Let (X, d) be a metric space and $K \subseteq X$.

A collection $\{U_i\}_{i \in I}$ of open sets is called *open cover* of K if $K \subseteq \bigcup_{i \in I} U_i$.

The set K is called *compact* if for all open covers $\{U_i\}_{i \in I}$ there exists a finite subcover, meaning there exists an $n \in \mathbb{N}$ and $\{U_1, \ldots, U_n\} \subseteq \{U_i\}_{i \in I}$ such that $K \subseteq \bigcup_{i=1}^n U_i$.

Example

Let $S \subseteq X$ where (X, d) is a metric space. If S is finite, then it is compact.

Proof.

Example

(0,1) is not compact.

Proof. The set EUnznew defined by is an open for (0,1) because (0,1) Suppose in order to derive a contradiction that "There exists a finite subcover, meaning In*EIN s.t. exists a finite subcover, meaning This means $C\left(\frac{1}{n_{1}*},1\right)$ sets are rested. But = XE(0,1) Sino the hit for any nit. Lich 20, 2023 8 / 28

Vx,y>0, InEM s.t nx>y (Archimedean)

Proposition

Let (X, d) be a metric space and take a non-empty subset $K \subseteq X$. The following holds:

- If X is compact and K is closed, then K is compact (i.e. closed subsets of compact sets are compact).
- **2** If K is compact, then K is closed.

Proof. (1) If X is compact and $K \subseteq X$ is closed, then K is compact We want to show that any open cover of K has a finite subcover. Let EU. 's if the an open Cover for K Since K^c is open, EU. SiET UK^c is an open cover for X. Since X is compact, there exist a finite subcover of the form <u>U</u>U; or (<u>U</u>U;) UKC. Either way, <u>U</u>U; is a finite subcover for K. :. K is compact.

(2)
$$K \subseteq X$$
 compact $\Rightarrow K$ is closed.
We show K^{c} is open. Let $\chi \in K^{c}$. By properties of
a methe, $Hy \in K$, $O(X, y) > O$. Let $\tilde{E} = d(X, y)$.
Then $B_{\tilde{E}}(X)$ and $B_{\tilde{E}}(Y)$ are disjoint.
Since K is compact $EB_{\tilde{E}}(Y)SyeK$ is an open cover,
there exist $i=1,...,n$ such that $K \in \mathcal{O}_{i=1}B_{\tilde{E}}(Y_{i})$
Define $U_{X} = \bigcap_{i=1}^{n} B_{d(X,Y_{i})}(X)$. Ux contains X j
is open 7 is disjoint from the subcover for K.

ę

July 20, 2023 11 / 28

Arbitrary compact metric spaces have some nice properties in general as the next proposition shows.

Proposition

A compact metric space (X, d) is complete and separable.

Also, just as we had a sequential characterization of the closure of a set in metric spaces, we similarly have a sequential characterization of compactness.

Theorem

Let (X, d) be a metric space. Then $K \subseteq X$ is compact with respect to the metric induced by d if and only if every sequence in K admits a subsequence converging to some point in K.

Compactness on \mathbb{R}^n

🕻 Theorem (Heine-Borel Theorem) 🌟

Let $K \subseteq \mathbb{R}^n$. Then K is compact with respect to the topology induced by the Euclidean distance if and only if it is closed and bounded.

A corollary of the last two theorems is the Bolzano-Weierstrass theorem.

Corollary (Bolzano-Weierstrass)

Any bounded sequence in \mathbb{R}^n has a convergent subsequence.

Proposition

Let (X, d_X) and (Y, d_Y) be metric spaces. Suppose $K \subseteq X$ is compact and let $f : K \to Y$ be continuous. Then f(K) is compact.

Note: this is a generalization of the Extreme Value Theorem to metric spaces.

[a,b]

Recall from the set theory section:

If $f: X \to Y$:

1
$$A \subseteq B \subseteq Y \Rightarrow f^{-1}(A) \subseteq f^{-1}(B)$$
 and $A \subseteq B \subseteq X \Rightarrow f(A) \subseteq f(B)$
2 $f^{-1}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f^{-1}(A_i)$, where $A_i \subseteq Y \forall i \in I$

$$f(\cup_{i \in I} A_i) = \cup_{i \in I} f(A_i), \text{ where } A_i \subseteq X \forall i \in I$$

$$A \subseteq X \Rightarrow A \subseteq f^{-1}(f(A))$$

Proof. Let
$$\mathcal{E}(\mathbf{x}; \mathbf{x}; \mathbf{z}; \mathbf{z};$$

Extra properties of $\ensuremath{\mathbb{R}}$

Right and left continuous

Recall: $f: \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$ such that $|x_0 - y| < \delta$ implies $|f(x_0) - f(y)| < \epsilon$. $x_0 = \delta < x_0 + \delta$

Definition

Let $f : \mathbb{R} \to \mathbb{R}$.

- f is *left continuous* at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$, such $|f(x_0) f(x)| < \epsilon$ whenever $x_0 \delta < x < x_0$.
- f is right continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$, such $|f(x_0) f(x)| < \epsilon$ whenever $x_0 < x < x_0 + \delta$.

We say that f is left continuous if it is left continuous at all points in the domain, and similar for right continuous.

Proposition

A function $f : \mathbb{R} \to \mathbb{R}$ is continuous if and only if it is left and right continuous.

Proof.

Bounded sequences and monotone convergence

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . We call $(x_n)_{n\in\mathbb{N}}$ bounded if there exists an M > 0 such that $|x_n| < M$ for all $n \in \mathbb{N}$.

Theorem (Monotone convergence theorem)

(i) Suppose (x_n)_{n∈ℕ} is an increasing sequence, i.e. x_n ≤ x_{n+1} for all n ∈ ℕ, and that it is bounded (above). Then the sequence converges. Furthermore, lim_{n→∞} x_n = sup_{n∈ℕ} x_n, where sup_{n∈ℕ} x_n := sup{x_n : n ∈ ℕ}.

(ii) Suppose (x_n)_{n∈ℕ} is a decreasing sequence, i.e. x_n ≥ x_{n+1} for all n ∈ ℕ, which is bounded (below). Then the sequence converges and lim_{n→∞} x_n = inf_{n∈ℕ} x_n := inf{x_n : n ∈ ℕ}.

Convention: sup $A = \infty$ if $A \subseteq \mathbb{R}$ is not bounded above and $\inf A = -\infty$ if A is not bounded below.

Lemma

If $A \subseteq B \subseteq \mathbb{R}$ is non-empty, then $\inf A \leq \sup A$, $\sup A \leq \sup B$, and $\inf A \geq \inf B$.

The proof of this follows from the definition of greatest lower and least upper bound.

Definition

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R} . We define the *limit superior* of $(x_n)_{n \in \mathbb{N}}$ as

 $\limsup_{n\to\infty} x_n := \lim_{n\to\infty} \sup_{k\ge n} x_k.$

Similarly we define the *limit inferior* of $(x_n)_{n \in \mathbb{N}}$ as

$$\liminf_{n\to\infty} x_n := \lim_{n\to\infty} \inf_{k\ge n} x_k.$$

If the sequence $(x_n)_{n\in\mathbb{N}}$ is not bounded above, then $\limsup_{n\to\infty} x_n = \infty$. Similarly, if the sequence $(x_n)_{n\in\mathbb{N}}$ is not bounded below, then $\liminf_{n\to\infty} x_n = -\infty$.

Proposition

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R} .

- The sequence of suprema, s_n = sup_{k≥n} x_k, is decreasing and the sequence of infima, i_n = inf_{k≥n} x_k, is increasing.
- The limit superior and the limit inferior of a bounded sequence always exist and are finite.

Theorem

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R} . Then the sequence converges to $x \in \mathbb{R}$ if and only if $\limsup_{n \to \infty} x_n = x = \liminf_{n \to \infty} x_n$.

Proof in notes.

We can extend this easily to a sequence of functions $f_n: X \to \mathbb{R}$ as follows:

Define $f = \limsup_{n \to \infty} f_n$ to be the function defined pointwise by $f(x) = \limsup_{n \to \infty} (f_n(x))$ and similar for the limit inferior.

There also exists a set theoretic version in terms of unions and intersections which you will encounter in probability.

References

Runde, Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

