Exercises for Module 7: Linear Algebra I

1. Suppose that $\alpha \in \mathbb{F}, \mathbf{v} \in V$, and $\alpha \mathbf{v}=\mathbf{0}$. Prove that $a=0$ or $\mathbf{v}=0$.

Suppose $\alpha \neq 0$.
Since $\alpha \in \mathbb{F}, \alpha$ has a multiplicative inverse, call it $\alpha^{-1}$.
Then $\alpha \vec{v}=\overrightarrow{0} \Rightarrow \alpha^{-1} \alpha \vec{v}=\overrightarrow{0} \Rightarrow \vec{v}=\overrightarrow{0}$.
Otherwise, if $\alpha=0$, then $\alpha \vec{J}=O \vec{V}=\vec{O}$ by lemma
from class.
2. Prove the following: Let $V$ be a vector space and let $U_{1}, U_{2} \subseteq V$ be subspaces. Then $U_{1} \cap U_{2}$ is also a subspace of $V$.

We show that the 3 properties hold.
First, since $U_{1}, U_{2}$ are subspaces, $\overrightarrow{0} \in U_{1} \& \vec{D} \in U_{2}$. Therefore $\vec{O} \in U_{1} \cap U_{2}$.
Second, if $\vec{u}_{1}, \vec{u}_{2} \in u_{1} \cap u_{2}$, then $\vec{u}_{1}, \vec{u}_{2} \in u_{1} \& \vec{u}_{1}, \vec{u}_{2} \in U_{2}$. Therefore $\vec{u}_{1}+\vec{u}_{2} \in u_{1}$ and $\vec{u}_{1}+\vec{u}_{2} \in U_{2}$, since $U_{1}, U_{2}$ are subspaces. $\therefore \vec{u}_{1}+\vec{u}_{2} \in U_{1} \cap U_{2}$.

Finally, let $\alpha \in F_{1}, \vec{u} \in U_{1} \cap u_{2}$. Then $\vec{u} \in u_{1}$ and $\alpha \vec{u} \in u_{1}$ and similarly $\vec{u} \in u_{2}$ \& $2 \vec{u} \in u_{2}, \therefore \alpha \vec{u} \in u_{1} \cap u_{2}$
3. Let $U_{1}$ and $U_{2}$ be subspaces of a vector space $V$. Prove that $U_{1} \cup U_{2}$ is a subspace of $V$ if and only if $U_{1} \subseteq U_{2}$ or $U_{2} \subseteq U_{1}$.
$\Theta$ We prove the contrapositive. Suppose $u_{1} \nsubseteq U_{2}$ and $U_{2} \notin U_{1}$. Then we can choose $u_{1} \in U_{1}$ s.t. s.t. $u_{1} \notin u_{2}$ and. $u_{2} \in U_{2}$ s.t. $u_{2} \notin U_{1}$.

Claim: $u_{1}+u_{2} \notin u_{1}$ and $u_{1}+u_{2} \notin u_{2}$
Proof of claim. Suppose $u_{1}+u_{2} \notin u_{1}$. Then $u+u_{2}-u_{1} \in u_{1}$ since $u_{1}$ is a vector space. This implies $u_{2} \in U_{1}$. Contradiction. The proof that $u_{1}+u_{2} \notin U_{2}$ is similar.
Since $u_{1}+u_{2} \notin u_{1}$ and $u_{1}+u_{2} \notin u_{2}, u_{1}+u_{2} \notin u_{1} \cup u_{2}$. Since $u_{1}, u_{2} \in u_{1} \cup u_{2}$, this shows that $U_{1} \cup U_{2}$ is not a subspace (not closed under addition).
(-) Suppose $u_{1} \subseteq u_{2}$. Then $u_{1} \cup u_{2}=u_{2}$, which is a subspace. Similarly, $u_{2} c u_{1} \Rightarrow u_{1} \cup u_{2}=u_{1}$ which is a subspace.
4. Suppose $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is linearly independent in $V$ and $\mathbf{w} \in V$. Prove that if $\mathbf{v}_{1}+\mathbf{w}, \ldots, \mathbf{v}_{m}+\mathbf{w}$ is linearly dependent, then $\mathbf{w} \in \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)$.
Proof Suppose $v_{1}+w, \ldots, v_{m}+w$ are linearly dependent.
Then for $\alpha_{i} \in \mathbb{F}, i=1, \ldots, m$,

$$
\begin{aligned}
0 & =\sum_{i=1}^{m} \alpha_{i}\left(v_{i}+w\right) \text { has at least one } \alpha_{i} \neq 0 \\
=0 & =\sum_{i=1}^{m} \alpha_{i} v_{i}+w \sum_{i=1}^{m} \alpha_{i} \\
& \Rightarrow w=\frac{\sum_{i=1}^{m} \alpha_{i} v_{i}}{\sum_{i=1}^{m} \alpha_{i}} \\
& \Rightarrow w=\sum_{i=1}^{m} \frac{\alpha_{i}}{\sum_{j=1}^{m} \alpha_{j}} v_{i} \\
& \Rightarrow w \in \operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}
\end{aligned}
$$

5. Suppose that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is linearly independent in $V$ and $\mathbf{w} \in V$. Show that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}, \mathbf{w}$ is linearly independent if and only if

$$
\mathbf{w} \notin \operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}
$$

(5) By contrapositive.

Suppose $w \in \operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$. Then $\exists \alpha_{i}, i=1, \ldots, m$ s.t.

$$
\begin{aligned}
& w=\sum_{i=1}^{m} \alpha_{i} v_{i} \\
& \Rightarrow O=\sum_{i=1}^{m} \alpha_{i} v_{i}-w
\end{aligned}
$$

$\Rightarrow 0=\sum_{i=1}^{m} \beta_{i} v_{i}+\beta_{m+1} w$ has a non-trivial sol'n for $\beta_{i} \in \mathbb{F}$ $\Rightarrow V_{1}, \ldots, V_{m}, W$ are lin. dependent
(E) Also by contrapositive. Suppose $V_{1}, \ldots, V_{m}, W$ are lineady dependent. Then $\exists \alpha_{i}, i=1, \ldots, m+1$, s.t. $\quad O=\sum_{i=1}^{m} \alpha_{i} v_{i}+\alpha_{m+1} w$ has a nontrivial sol' $n$. Note that we must have $\alpha_{m+1} \neq 0$ because otherwise $v_{1}, \ldots, v_{m}$ would be linearly dependent. $\Rightarrow w=\sum_{i=1}^{m} \frac{\alpha i}{\alpha_{m+1}} v_{i} \Rightarrow w \in \operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$
6. Let $T \in \mathcal{L}(\mathbb{P}(\mathbb{R}), \mathbb{P}(\mathbb{R}))$ be the map $T(p(x))=x^{2} p(x)$ (multiplication by $x^{2}$ ).
(i) Show that $T$ is linear.
(ii) Find the null space and range of $T$.
(i) Let $\alpha, \beta \in \mathbb{F}, p, q \in \mathbb{P}(\mathbb{R})$.

$$
\begin{aligned}
T(\alpha p(x)+\beta q(x)) & =x^{2}(\alpha p(x)+\beta q(x)) \\
& =\alpha x^{2} p(x)+\beta x^{2} q(x) \\
& =\alpha T p(x)+\beta T q(x)
\end{aligned}
$$

(ii) Null space

We need polynomials $p(x)$ such that $x^{2} p(x)=0 \quad(\forall x \in \mathbb{R})$. This implies $p(x)=0 \quad \forall x \in \mathbb{R}$, so null $T=\{0\}$.

Range
We need to find all polynomials $p$ s.t. $\exists$ polynomial $q$ with

$$
p(x)=\tau q(x) \quad \Rightarrow p(x)=x^{2} q(x)
$$

This holds as long as $p$ has minimum degree $\geq 2$, so range $T=\{0\} \cup\{p(x)$ : minimum deques of $p$ is at least 2$\}$.
7. Let U and V be finite-dimensional vector spaces and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. Show that

$$
\operatorname{dim} \operatorname{null} S T \leq \operatorname{dim} \operatorname{null} S+\operatorname{dim} \operatorname{null} T
$$

Proof By the rank-nullity the, for $T: U \rightarrow V$, $\operatorname{dim} U=\operatorname{dim}$ range $T+\operatorname{dinnull} T$. Note that $T: U \rightarrow V, S: V \rightarrow W, \delta T: U \rightarrow W$.
Also, null $S T$ is a subspace of $U$. Let $T^{\prime}$ be $T$ restricted to the subspace null $S T$.

$$
\begin{aligned}
\operatorname{dim} \text { null } S T & =\operatorname{dim} \text { null } T^{\prime}+\operatorname{dim} \text { range } T^{\prime} \text { by rank nullity } \\
& =\operatorname{dim} \text { null } T+\operatorname{dim} \text { range } T^{\prime} \text { since null } T \leq \text { null } S T \\
& \leq \operatorname{dim} \text { null } T+\operatorname{dim} \text { null } S+\operatorname{dim} \text { range } S(T) \text { by rank nullity } \\
& =\operatorname{dim} n c l l ~ T+\operatorname{dim} \text { null } S \text { by construction } \begin{array}{c}
\text { app } \\
\text { rang } T
\end{array}
\end{aligned}
$$

