Exercises for Module 7: Linear Algebra I

1. Suppose that $\alpha \in \mathbb{F}, \mathbf{v} \in V$, and $\alpha \mathbf{v} = \mathbf{0}$. Prove that a = 0 or $\mathbf{v} = 0$.

Suppose
$$d \neq 0$$
.
Since $d \in IF$, α has a multiplicative inverse, call it σ^{-1} .
Then $d\vec{v} = \vec{0} \Rightarrow \vec{a} \cdot d\vec{v} = \vec{0} \Rightarrow \vec{V} = \vec{0}$.
Otherwise, if $d = 0$, then $d\vec{v} = 0\vec{V} = \vec{0}$ by lemma
from class.

2. Prove the following: Let V be a vector space and let $U_1, U_2 \subseteq V$ be subspaces. Then $U_1 \cap U_2$ is also a subspace of V.

We show that the 3 properties hold.
First, since U., U2 are subspaces, JEU, & JEU2. Therefore DEU, NU2.
Second, if
$$\vec{u}_1, \vec{u}_2 \in U_1, NU_2$$
, then $\vec{u}_1, \vec{u}_2 \in U_1$ & $\vec{u}_1, \vec{u}_2 \in U_2$.
And $\vec{u}_1 + \vec{u}_2 \in U_2$, since U., U2 are subspaces. $\vec{u}_1 + \vec{u}_2 \in U_1 \cap U_2$.
Finally, let deft, $\vec{u} \in U_1 \cap U_2$. Then $\vec{u} \in U_1$ and $d\vec{u} \in U_1$
and similarly $\vec{u} \in U_2$ & $d\vec{u} \in U_2$, $\vec{u} \in U_1 \cap U_2$.

3. Let U_1 and U_2 be subspaces of a vector space V. Prove that $U_1 \cup U_2$ is a subspace of V if and only if $U_1 \subseteq U_2$ or $U_2 \subseteq U_1$.

(∋) We prove the contrapositive. Suppose U, \$U₂ and U₂\$U₁. Then we can choose u, eU, s.t. s.t. u, \$U₂ and u₂eU₂ s.t. u₂\$U₁.

Claim: U, + U2 & U, and U, + U2 & U2 Proof of claim. Suppose U, + U2 & U, . Then U+U2-U, eU, since U, is a vector space. This implies U2 EU, . Contradiction. The proof that u, + U2 & U2 is similar.

Since $u_1+u_2\notin U_1$ and $u_1+u_2\notin U_2$, $u_1+u_2\notin U_1\cup U_2$. Since $u_1,u_2\in U_1\cup U_2$, Ais shows that $U_1\cup U_2$ is not a subspace (not closed under addition).

(=) Suppose
$$U_1 \in U_2$$
. Then $U_1 \cup U_2 = U_2$, which is a subspace.
Similarly, $U_2 \in U_1 =$) $U_1 \cup U_2 = U_1$, which is a subspace.

4. Suppose $\mathbf{v}_1, ..., \mathbf{v}_m$ is linearly independent in V and $\mathbf{w} \in V$. Prove that if $\mathbf{v}_1 + \mathbf{w}, ..., \mathbf{v}_m + \mathbf{w}$ is linearly dependent, then $\mathbf{w} \in \text{span}(\mathbf{v}_1, ..., \mathbf{v}_m)$.

Proof Suppose VI+W, ..., Vm+W are linearly dependent.
Then for dielF,
$$i=1,...,m$$
,
 $0 = \sum_{i=1}^{m} \alpha_i (V_i + W)$ has at least one $\alpha_i \neq 0$
 $\exists 0 = \sum_{i=1}^{m} \alpha_i (V_i + W)$ di
 $\exists W = \frac{\sum_{i=1}^{m} \alpha_i V_i}{\sum_{i=1}^{m} \alpha_i}$
 $\exists W = \sum_{i=1}^{m} \frac{\alpha_i}{\alpha_i} V_i$
 $\exists W \in \text{span } \xi_{V_1}, ..., Vm_s$

5. Suppose that $\mathbf{v}_1, ..., \mathbf{v}_m$ is linearly independent in V and $\mathbf{w} \in V$. Show that $\mathbf{v}_1, ..., \mathbf{v}_m, \mathbf{w}$ is linearly independent if and only if

$$\mathbf{w} \notin \operatorname{span}\{\mathbf{v}_1, ..., \mathbf{v}_m\}$$

- 6. Let $T \in \mathcal{L}(\mathbb{P}(\mathbb{R}), \mathbb{P}(\mathbb{R}))$ be the map $T(p(x)) = x^2 p(x)$ (multiplication by x^2).
 - (i) Show that T is linear.
 - (ii) Find the null space and range of T.

Range
We need to find all polynomials p s.t. I polynomial q with

$$p(x) = Tq(x) = p(x) = x^{2}q(x)$$

This holds as long as p has minimum degree = 2, so
range T = $\xi O Z U \xi p(x)$: minimum degree of p is at least 2?

7. Let U and V be finite-dimensional vector spaces and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. Show that

 $\dim \operatorname{null} ST \leq \dim \operatorname{null} S + \dim \operatorname{null} T$