Exercises for Module 7: Linear Algebra I

1. Suppose that $\alpha \in \mathbb{F}, \mathbf{v} \in V$, and $\alpha \mathbf{v}=\mathbf{0}$. Prove that $a=0$ or $\mathbf{v}=0$.
2. Prove the following: Let V be a vector space and let $U_{1}, U_{2} \subseteq V$ be subspaces. Then $U_{1} \cap U_{2}$ is also a subspace of V.
3. Let U_{1} and U_{2} be subspaces of a vector space V. Prove that $U_{1} \cup U_{2}$ is a subspace of V if and only if $U_{1} \subseteq U_{2}$ or $U_{2} \subseteq U_{1}$.
4. Suppose $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is linearly independent in V and $\mathbf{w} \in V$. Prove that if $\mathbf{v}_{1}+\mathbf{w}, \ldots, \mathbf{v}_{m}+\mathbf{w}$ is linearly dependent, then $\mathbf{w} \in \operatorname{span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)$.
5. Suppose that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is linearly independent in V and $\mathbf{w} \in V$. Show that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}, \mathbf{w}$ is linearly independent if and only if

$$
\mathbf{w} \notin \operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}
$$

6. Let $T \in \mathcal{L}(\mathbb{P}(\mathbb{R}), \mathbb{P}(\mathbb{R}))$ be the map $T(p(x))=x^{2} p(x)$ (multiplication by x^{2}).
(i) Show that T is linear.
(ii) Find the null space and range of T.
7. Let U and V be finite-dimensional vector spaces and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. Show that dim null $S T \leq \operatorname{dim}$ null $S+\operatorname{dim}$ null T
