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Outline

Today:

• Vector spaces and subspaces

• Linear independence and bases

• Linear maps, null space, range
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Vector spaces & subspaces
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Definition
We call V a vector space if the following hold:

(A) Commutativity in addition: u+ v = v + u for all u, v 2 V

(B) Associativity in addition: u+ (v +w) = (u+ v) + w for all u, v,w 2 V

(C) Existence of a neutral element, addition: There exists a vector 0 such that for any
v 2 V , 0+ v = v

(D) Additive inverse: For every v 2 V , there exists another vector, which we denote
�v, such that v + (�v) = 0.

(E) Existence of a neutral element, multiplication: For any v 2 V , 1⇥ v = v

(F) Associativity in multiplication: Let ↵,� 2 F. For any v 2 V , (↵�)v = ↵(�v)

(G) Let ↵ 2 F,u, v 2 V . ↵(u+ v) = ↵u+ ↵v.

(H) Let ↵,� 2 F, v 2 V . (↵+ �)v = ↵v + �v.
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Elements of the vector space are called vectors.
Most often we will assume F = C or R.

Example

The following are vector spaces:

• Rn

• Cn

• C (R;R), continuous functions from R to R
• Mn⇥m, matrices of size n ⇥m

• Pn (polynomials of degree n, p(x) = a0 + a1x + . . .+ anxn).
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Lemma
For every v 2 V , 0v = 0.

Proof.
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OF =(0 +0)=0 + Or

Add theadditive inverse of or to both

sides: =Ou



Lemma

For every v 2 V , we have �v = (�1)⇥ v.

Proof.
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We want toshow i +(1x5 =0.
-

i +z1)x
=(1 + c-1)) =0 =

0



Definition

A subset U of V is called a subspace of of V if U is also a vector space (using the
same addition and scalar multiplication as on V ).

Proposition

A subset U of V is a subspace of V if and only if U satisfies the following three
conditions:

1 0 2 U

2 Closed under addition: u, v 2 U implies u+ v 2 U

3 Closed under scalar multiplication: ↵ 2 F and u 2 U implies ↵u 2 U
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Proof. ())

(()
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If U is a subspace of , then itis
a vector

space, so (I,RBC hold.

Suppose (1), (2), and (3) hold

LeteVThentakingX gie
et

result and EIx* EU. by previous
Other properties can be shown.



Linear (in)dependence and bases
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Linear combinations

Definition
A linear combination of vectors v1, ..., vn of vectors in V is a vector of the form

↵1v1 + ...+ ↵nvn =
nX

k=1

↵kvk

where ↵1, ...,↵m 2 F.
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Span

Definition
The set of all linear combinations of a list of vectors v1, ..., vn in V is called the span

of v1, ..., vn, denoted span{v1, ..., vn}. In other words,

span{v1, ..., vn} = {↵1v1 + ...+ ↵mvn : ↵1, ...,↵n 2 F}

The span of the empty list is defined to be {0}.
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Basis

Definition

A system of vectors v1, . . . , vn is called a basis (for the vector space V ) if any vector
v 2 V admits a unique representation as a linear combination

v = ↵1v1 + . . .+ ↵nvn =
nX

k=1

↵kvk .

Example
• For Fn, e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) is a basis

• The monomials 1, x , x2, . . . , xn form a basis for Pn.
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Linear independence

Definition
A system of vectors v1, . . . , vn in V is called linearly independent if

nX

i=1

↵ivi = 0

implies ↵i = 0 for all i = 1, . . . , n.

Otherwise, we call the system linearly dependent.

Linear combinations ↵1v1 + ...+ ↵nvn such that ↵k = 0 for every k are called trivial.
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Spanning set

Definition
A system of vectors v1, . . . , vn in V is called spanning if any vector in V can be
written as a linear combination of v1, . . . , vn. In other words,

V = span{v1, . . . , vn}.

Such a system is also often called generating or complete. The next proposition relates
spanning and linearly independent to a basis.
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Proposition

A system of vectors v1, . . . vn 2 V is a basis if and only if it is linearly independent and
spanning.

Proof. ())
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Let v., ...,nEU be a basis. Let vEU.

7diEF s.t. v =diUn.V,..in
Span V.

Since the representation is unique for each veY,
O =Ov,..... tovnis theonly way

to

choose di s.t. sum=0.
... , ...,n

are linearly independent
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Suppose v., .... In are linearly ind. E span V.
Let rev. Then since U., .... In Span V, 72iEF
S.t. v =[divi.

i =1

We show asare unique by
contradiction.

Suppose 5Bi, i=1....in Bi =di, such that

V =iVi.
Then 8 =v -v

=Exi-i) Vi
By linear independence, i =Bi ti =1, . ..

theconstants are unique



Proposition

Let v1, . . . , vn 2 V be spanning. Then v1, . . . , vn contains a basis.

Sketch of proof.
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If v., ...,VnElare linearly independent,then we're done. Otherwise, Zvi i=1,....
I

such thatvi =xjVj. Remove this vi
Repeatuntil the"thatremain are
linearly independent.

&



Definition
An F-vector space V is called finite dimensional if there exists a finite list of vectors
that span it, i.e. there exist n 2 N and v1, . . . , vn 2 V such that
V = span{v1, . . . , vn}. Otherwise, we call V infinite dimensional.

Example
• Fn, Mm⇥n, Pn are examples of finite dimensional vector spaces

• The F-vector space P = {
Pn

i=1 ↵ix i : n 2 N,↵i 2 F, i = 1, . . . , n} is infinite
dimensional.
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Why? Suppose is finite dimensional,
5.,..., pn that span I.

Butp,..., pn have
a maximum degree, call it. ThenN+1

x & spankp...., pn5



Corollary

Every finite dimensional vector space has a basis.

This follows from the fact that every spanning set for a vector space contains a basis.

This can also be extended to infinite dimensional vector spaces, i.e. when we do not
assume that there exists a finite spanning set. However, this relies on the Axiom of
Choice and is beyond the scope of this course.
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Proposition

Every linearly independent list of vectors in a finite-dimensional vector space can be
extended to a basis of the vector space.

Proof.
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R3: (1,2,07, [5,1,1

-

Letu,... Un be linearly independent
vectors in

U. Add thebasis of U, I., ...,un to the
set of vectors.Then we reduce it byprevious result toa basis that contains
the Ui.



Dimension

Proposition

Let v1, . . . , vn and u1, . . . ,um be a basis for V . Then m = n.

The proof is omitted,. It relies on the fact that the number of elements in linearly
independent systems are always less than or equal to the number of elements in
spanning systems.

Definition
Let V be a finite dimensional F-vector space. The number of elements in a basis of V
is called the dimension of V and is denoted dim(V ).

By the previous definition, the notion of dimension is well-defined.
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Dimension

Example
• dim(Fn) =

• dim(Pn) =

• dim{0} =
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n

n +1

0



Linear maps
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Linear Maps

Definition
A map from a vector space U to a vector space V is linear if

T (↵u+ �v) = ↵T (u) + �T (v) for any u, v 2 V , ↵,� 2 F

Notation: L(U,V ) is the set of all linear maps from F-vector space U to F-vector
space V
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T( +5) =T(u)++(4)
+(2) =xT(u)



Example
• Zero map

• Identity map

• Di↵erentiation
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0:UtV H8

I:VtU: Iv = FEU

DeL(P(R),PCRL) polynomials
Dp =p'D(xf(x) +Bg(x) =xf(x)

+Bg(x)



Theorem
Suppose u1, . . . ,un is a basis for U and v1, . . . , vn is a basis for V . Then there exists a
unique linear map T : U ! V such that Tuj = vj for j = 1, . . . , n.

Proof in book.

Theorem

Let S ,T 2 L(U,V ) and ↵ 2 F. L(U,V ) is a vector space with addition defined as the
sum S + T and multiplication as the product ↵T .

The proof follows from properties of linear maps and vector spaces. Note that the
additive identity is the zero map.
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Lemma

Let T 2 L(U,V ). Then T (0) = 0.

Proof.
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+(8) =T(0 +8) =T(8) +T(o)
Add - T(o) toboth sides

=>8 =T(8)



Null space and range

Definition
Let T : U ! V be a linear transformation. We define the following important
subspaces:

• Kernel or null space: nullT = {u 2 U : Tu = 0}
• Range: range T = {v 2 V : 9u 2 U such that v = Tu}

The dimensions of these spaces are often called the following:

• Nullity: nullity(T ) = dim(null(T ))

• Rank: rank(T ) = dim(range(T ))
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Proposition

Let T : U ! V . The null space of T is a subspace of U and the range of T is a
subspace of V .

Proof.
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(i) Since TCO) =0, 0 is in nullT.

Let u,venullT, then T(u+) =T(u)+T(v)
->

=>utv e null T

Let Gt#, vEnullT. T(CuL =9T(u)
=0

=>du GnuKT
-

(ii) TCOL=0 => Oz ranget
Suppose V,Vatranget. Zu.,uatll

such

that



Example

Zero map from a vector space U to a vector space V :

• The null space is

• The range is

Di↵erentiation map from P(R) to P(R):
• The null space is

• The range is
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T(u,)=V, T(ux)
=v2

- T(u, +4a) =T(u.)+T(na)=VitV.-

(25is similarl

s
constants

↑(1)



Definition (Injective and surjective)

Let T : U ! V . T is injective if Tu = Tv implies u = v and T is surjective if
8u 2 U, 9v 2 V such that v = Tu, i.e. if rangeT = V .

Theorem

T 2 L(U, v) is injective if and only if nullT = {0}.
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IDD is U



Proof. ())

(()
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Suppose T is injective. We know 8 EnullT.
Suppose IVEnuIIT. Tien T(u) =0 =TCO).
Since T is injective, v =0.

...nullt =283

Suppose nullT
=303. Let u,v-1s. t.

Tu =IV.

=>0 =Tu-tr =T(u -v)

=>(-v)t null T
=>u - v =0

=

1u =V



Theorem (Rank Nullity Theorem)

Let T : U ! V be a linear transformation, where U and V are finite-dimensional
vector spaces. Then

rankT + nullityT = dimU.

Proof in the lecture notes (pg. 35).
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dim(rangeth +dim(nullTh =diml
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