Exercises for Module 8: Linear Algebra II

1. Let $D \in \mathcal{L}(\mathbb{P}_4(\mathbb{R}), \mathbb{P}_3(\mathbb{R}))$ be the differentiation map, Dp = p'. Find bases of $\mathbb{P}_4(\mathbb{R})$ and $\mathbb{P}_3(\mathbb{R})$ such that the matrix representation of $\mathcal{M}(D)$ with respect to these basis is given by

$$\mathcal{M}(D) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

Basis for
$$P_4(R)$$
: $u_1 = \frac{1}{4}x^4$, $u_2 = \frac{1}{3}x^3$, $u_3 = \frac{1}{3}x^4$, $u_4 = x$, $u_5 = 1$
Basis for $P_3(R)$: $v_1 = x^3$, $v_2 = x^2$, $v_3 = x$, $v_4 = 1$

Then
$$T(u_1) = (\frac{1}{4}x^{4})^{1} = x^{3} = v_1$$

 $T(u_2) = (\frac{1}{3}x^{3})^{1} = x^{2} = v_2$
 $T(u_3) = (\frac{1}{3}x^{2})^{1} = x = v_3$
 $T(u_4) = (x)^{1} = 1 = v_4$
 $T(u_5) = (1)^{1} = 0$
 $= 0$

2. Show that matrix multiplication of square matrices is not commutative, i.e find matrices $A, B \in M_2$ such that $AB \neq BA$.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$$
$$AB = \begin{pmatrix} 19 & 24 \\ 43 & 56 \end{pmatrix}, BA = \begin{pmatrix} 23 & 34 \\ 31 & 46 \end{pmatrix}$$

3. A square matrix is called *nilpotent* if $\exists k \in \mathbb{N}$ such that $A^k = 0$. Show that for a nilpotent matrix A, |A| = 0.

4. A real square matrix Q is called *orthogonal* if $Q^T Q = I$. Prove that if Q is orthogonal, then $|Q| = \pm 1$.

$$I = Q^{T}Q$$

$$I = (Q^{T}Q) + de = (T^{T}Q) +$$

5. An $n \times n$ matrix is called *antisymmetric* if $A^T = -A$. Prove that if A is antisymmetric and n is odd, then |A| = 0.

$$A^{T} = -A$$

=>det(A^{T}) = det(-A)
=> det(A) = (-1)^{n} det(A)
=> det(A) = 0 if n is odd

6. Let V be an inner product space, U a vector space and $S: U \to V, T: U \to V$ be linear maps. Show that $\langle S\mathbf{u}, \mathbf{v} \rangle = \langle T\mathbf{u}, \mathbf{v} \rangle$ for all $\mathbf{u} \in U$ and $\mathbf{v} \in V$ implies S = T.

Proof
Suppose
$$\langle Su, v \rangle = \langle Tu, v \rangle$$
 $\forall uell, vell$
 $= 1 \langle Su, v \rangle - \langle Tu, v \rangle = 0$
 $\Rightarrow \langle Su - Tu, v \rangle = 0$ by linearity in 1^{st} argument
 $\Rightarrow Su - Tu = 0$ by proposition $S.S.7$
 $\Rightarrow Su = Tu$ $\forall uell$
 $\Rightarrow S = T$