Exercises for Module 9: Linear Algebra III

1. Let U, V, W be inner product spaces and $S, T \in \mathcal{L}(U, V)$ and $R \in \mathcal{L}(V, W)$. Show that the following holds
2. $(S+\alpha T)^{*}=S^{*}+\bar{\alpha} T^{*}$ for all $\alpha \in \mathbb{F}$
3. $\left(S^{*}\right)^{*}=S$
4. $(R S)^{*}=S^{*} R^{*}$
5. $I^{*}=I$, where $I: U \rightarrow U$ is the identity operator on U
6. Let $u \in U, v \in V$.

$$
\begin{aligned}
&\left\langle u,(S+\alpha T)^{*} v\right\rangle=\langle(S+\alpha T) u, v\rangle \text { by def ln of } \\
& \text { adjoint } \\
&=\langle S u+\alpha T u, v\rangle \text { by dat of linear map } \\
&=\langle S u, v\rangle+\alpha\langle T u, v\rangle \text { by lin. of } \\
&=\left\langle u, S^{*} v\right\rangle+\alpha\left\langle u, T^{*} v\right\rangle \text { arg. } \\
&=\left\langle u, S^{*} v\right\rangle+\left\langle u, \bar{\alpha} T^{*} v\right\rangle \text { by linearity } \\
&=\left\langle u,\left(S^{*}+\bar{\alpha} T^{*}\right) v\right\rangle
\end{aligned}
$$

$$
\therefore(S+\alpha T)^{*}=S^{*}+\alpha T^{*} \text { by exercise } 4
$$

2. Let $u \in U, s \in V$.

$$
\begin{aligned}
&\left\langle u,\left(S^{*}\right)^{*} v\right\rangle=\left\langle S^{*} u, v\right\rangle \\
&=\left\langle v, \delta^{*} u\right\rangle \text { by conjugate symmetry } \\
&=\left\langle S_{v, u\rangle}\right. \text { by deft of adjoint } \\
&=\left\langle u, S_{v}\right\rangle \quad \text { by conjugate symmetry } \\
& \therefore\left(S^{*}\right)^{*}=S \text { by exercise } 4
\end{aligned}
$$

3. Let $u \in U$, $w \in W$.

$$
\begin{aligned}
&\left\langle u,(R S)^{*} \omega\right\rangle=\langle R S u, w\rangle \\
&=\left\langle S u, R^{*} \omega\right\rangle \\
&=\left\langle u, S^{*} R^{*} \omega\right\rangle \\
& \therefore(R S)^{*}=S^{*} R^{*}
\end{aligned}
$$

4. Let $u_{1}, u_{2} \in U$.

Then

$$
\begin{aligned}
\left\langle u_{1}, I^{*} u_{2}\right\rangle & =\left\langle I u_{1}, u_{2}\right\rangle \\
& =\left\langle u_{1}, u_{2}\right\rangle \\
& =\left\langle u_{1}, I u_{2}\right\rangle \\
\therefore I & =I^{*}
\end{aligned}
$$

2. Let V be an inner product space and $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ be an orthonormal basis and $\mathbf{y} \in V$. Then, \mathbf{x} has a unique representation $\mathbf{y}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}$. Show that $\alpha_{i}=\left\langle\mathbf{y}, \mathbf{x}_{i}\right\rangle$ for all $i=1, \ldots, n$.

$$
\begin{aligned}
\left\langle y, x_{i}\right\rangle & =\left\langle\sum_{j=1}^{n} \alpha_{j} x_{j}, x_{i}\right\rangle \\
& =\sum_{j=1}^{n} \alpha_{j}\left\langle x_{j}, x_{i}\right\rangle \quad \text { by linearity in } 1^{s t} \text { argument } \\
& =\alpha_{i} \text { since }\left(x_{j}, x_{i}\right\rangle=1 \text { if } i=j \& \quad 0 \text { otherwise }
\end{aligned}
$$

3. Let V be an inner product space and $U \subseteq V$ a subset. Show that U^{\perp} is a subspace of V.

$$
U^{\perp}:=\{x \in V:\langle x, u\rangle=0 \quad \forall u \in U\}
$$

We must show U^{\perp} is a subspace of V. First of all, $D \in U^{+}$since $\langle 0, u\rangle=0 \quad \forall u \in U$.
Let $x, y \in U^{\perp}$. Then $\begin{aligned}\langle x+y, u\rangle & =\langle x, u\rangle+\langle y, u\rangle \text { by linearity in } 1 \text { st argument } \\ & =0\end{aligned}$
so $x+y \in U^{+}$.
Also, if $\alpha \in \mathbb{F}, x \in U^{+}$, then $\langle\alpha x, u)=\alpha\langle x, u)=0$, so $\alpha x \in U^{+}$.
$\therefore U^{+} \subseteq V$ is a subspace.
4. Let $A, B \in M_{n}(\mathbb{F})$ be similar matrices. Show that their characteristic polynomials coincide.

Proof Let $A \& B$ be similar. Then there exists an invertible matrix S such that $A=\delta B S^{-1}$.

Note that similar matrices have the same determinant:

$$
\operatorname{det}(A)=\operatorname{det}\left(S B S^{-1}\right)=\operatorname{det}(S) \operatorname{det}(B) \operatorname{det}\left(S^{-1}\right)=\operatorname{det}(B)
$$

Since $\operatorname{det}\left(S^{-1}\right)=\operatorname{det}(S)^{-1}$ as $\delta S^{-1}=I$.
We can write

$$
\begin{aligned}
A-\lambda I & =S B S^{-1}-\lambda S I S^{-1} \\
& =S\left(B S^{-1}-\lambda I S^{-1}\right) \\
& =S(B-\lambda I) S^{-1} .
\end{aligned}
$$

Therefore if $A \& B$ are similar, then $A-\lambda I \& B-\lambda I$ are similar, and therefore $\operatorname{det}(A-\lambda I)=\operatorname{det}(B-\lambda I)$. So A, B have the same char poly.
5. Show that $A \in M_{n}(\mathbb{C})$ is invertible if and only if $0 \notin \sigma(A)$.

Recall that $\lambda \in \sigma(A)$ means λ is an eigenvalue for A, i.e. $\cdot \operatorname{det}(A-\lambda I)=0$.
\Rightarrow By contrapositive.
Suppose $O \in \sigma(A)$. Then $\operatorname{det}(A-O I)=0$.

$$
\Rightarrow \operatorname{det}(A)=0
$$

$\Rightarrow A$ is not invertible by theorem from class.
(- By contrapositive.
Suppose A is not invertible.
Then $\operatorname{det}(A)=0$.

$$
\begin{aligned}
& \Rightarrow \operatorname{det}(A-0 I)=0 \\
& \Rightarrow 0 \in O(A)
\end{aligned}
$$

6. Suppose N is a nilpotent matrix. Show that $\sigma(N)=\{0\}$.

Suppose N is nilpotent. This means $\exists k \geqslant 1$ s.t. $N^{k}=0$. First, we show $\{O\} \subseteq \sigma(N)$.
Since N is nilpotent, $N^{k}=0 \Rightarrow \operatorname{det}\left(N^{k}\right)=0 \Rightarrow \operatorname{det}(N)^{k}=0 \Rightarrow \operatorname{det}(N)=0$.
Thus $0 \in \theta(N)$ by previous exercise.
To show $\sigma(N) \subseteq\{0\}$, first note that if $v \neq 0$ is an eigenvector associated with λ, then $N^{k} v=\lambda^{k} v$.

Thus if λ is an eigenvalue of $N, \lambda=0$, so $\sigma(N) \subseteq\{0\}$.

$$
\therefore \sigma(N)=\{0\}
$$

7. Let $A \in M_{n}(\mathbb{C})$ be an invertible matrix. Show that λ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue of A^{-1}.

Let λ be an eigenvalue of $A . \lambda \neq 0$ by exercise 2 .
$\Leftrightarrow A v=\lambda v$ where $v \neq 0$ by definition

$$
\begin{aligned}
\Leftrightarrow A^{-1} A v & =A^{-1} \lambda v \\
\Leftrightarrow I V & =\lambda A^{-1} v \\
\Leftrightarrow \quad v & =\lambda A^{-1} v \\
\Leftrightarrow \lambda^{-1} v & =A^{-1} v
\end{aligned}
$$

$\Leftrightarrow \lambda^{-1}$ is an eigenvalue of A^{-1} by definition
8. Suppose $A \in M_{n}(\mathbb{C})$ is Hermitian. Show that all the eigenvalues of A are real. Hint: Note that if \mathbf{x} is a normalized eigenvector of A with eigenvalue λ, then $\langle A \mathbf{x}, \mathbf{x}\rangle=\lambda$.

Suppose A is Hermitian. This means $A=A^{*}$.
Let λ be an eigenvalue of A. Then $\exists v \neq 0$ s.t $A V=\lambda V$.
We can normalize v by dividing by $\|v\|=\sqrt{\langle v, v\rangle}$, so
$\exists x \neq 0$ sit $A x=\lambda x$ \& $\|x\|=1$.
Then $\lambda=\lambda\|x\|^{2}=\lambda\langle x, x\rangle$
$=\langle x x, x\rangle$ by linearity of ${ }^{5 t}$ argument of inner pood
$=\langle A x, x\rangle$
$=\left\langle x, A^{*} x\right\rangle$ since A^{*} is the adjoint
$=(x, A x)$ since $A=A$
$=\langle x, \lambda x\rangle$
$=\bar{\lambda}\langle x, x\rangle$ by conjugate symmetry $\&$ livearity
$=\pi$
Since $\lambda=\bar{\lambda}, \lambda \in \mathbb{R}$.
9. Let $A \in M_{n}(\mathbb{R})$. Show that the eigenvalues of $A^{T} A$ are non-negative.

Let $A \in M_{n}(\mathbb{R})$. Note that this means the adjoint of A is A^{\top}.
Let λ be an eignnualue of $A^{\top} A$ with normalized eigenvector x, i.e. $A^{\top} A x=\lambda x \&$ $\|x\|=1$.
Then $\lambda=\lambda\|x\|^{\alpha}=\lambda\langle x, x\rangle=\langle\lambda x, x\rangle$

$$
\begin{aligned}
& =\left\langle A^{\top} A x, x\right\rangle \\
& =\langle A x, A x\rangle \text { since }\left(A^{\top}\right)^{*}=A \\
& =\|A x\|^{2} \geq 0 \text { by properties of norm }
\end{aligned}
$$

