Exercises for Module 9: Linear Algebra III

1. Let U, V, W be inner product spaces and $S, T \in \mathcal{L}(U, V)$ and $R \in \mathcal{L}(V, W)$. Show that the following holds
2. $(S+\alpha T)^{*}=S^{*}+\bar{\alpha} T^{*}$ for all $\alpha \in \mathbb{F}$
3. $\left(S^{*}\right)^{*}=S$
4. $(R S)^{*}=S^{*} R^{*}$
5. $I^{*}=I$, where $I: U \rightarrow U$ is the identity operator on U
6. Let V be an inner product space and $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ be an orthonormal basis and $\mathbf{y} \in V$. Then, \mathbf{x} has a unique representation $\mathbf{y}=\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}$. Show that $\alpha_{i}=\left\langle\mathbf{y}, \mathbf{x}_{i}\right\rangle$ for all $i=1, \ldots, n$.
7. Let V be an inner product space and $U \subseteq V$ a subset. Show that U^{\perp} is a subspace of V.
8. Let $A, B \in M_{n}(\mathbb{F})$ be similar matrices. Show that their characteristic polynomials coincide.
9. Show that $A \in M_{n}(\mathbb{C})$ is invertible if and only if $0 \notin \sigma(A)$.
10. Suppose N is a nilpotent matrix. Show that $\sigma(N)=\{0\}$.
11. Let $A \in M_{n}(\mathbb{C})$ be an invertible matrix. Show that λ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue of A^{-1}.
12. Suppose $A \in M_{n}(\mathbb{C})$ is Hermitian. Show that all the eigenvalues of A are real. Hint: Note that if \mathbf{x} is a normalized eigenvector of A with eigenvalue λ, then $\langle A \mathbf{x}, \mathbf{x}\rangle=\lambda$.
13. Let $A \in M_{n}(\mathbb{R})$. Show that the eigenvalues of $A^{T} A$ are non-negative.
