Module 9: Linear Algebra III

Operational math bootcamp

Statistical Sciences
UNIVERSITY OF TORONTO

Emma Kroell
University of Toronto
July 26, 2023

Outline

- Adjoints, unitaries and orthogonal matrices
- Orthogonal decomposition
- Spectral theory
- Eigenvalues and eigenvectors
- Algebraic and geometric multiplicity of eigenvalues
- Matrix diagonalization

Recall

Definition

Let V be an \mathbb{F}-vector space. A function $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{F}$ is called inner product on V if the following holds:
(1) (Conjugate) symmetry: $\langle\mathbf{x}, \mathbf{y}\rangle=\overline{\langle\mathbf{y}, \mathbf{x}\rangle}$ for all $\mathbf{x}, \mathbf{y} \in V$, where \bar{a} denotes the complex conjugate for $a \in \mathbb{C}$
(2) Linearity in the first argument: $\langle\alpha \mathbf{x}+\beta \mathbf{y}, \mathbf{z}\rangle=\alpha\langle\mathbf{x}, \mathbf{z}\rangle+\beta\langle\mathbf{y}, \mathbf{z}\rangle$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and $\alpha, \beta \in \mathbb{F}$
(3) Positive definiteness: $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$ and $\langle\mathbf{x}, \mathbf{x}\rangle=0$ if and only if $\mathbf{x}=\mathbf{0}$

A vector space equipped with an inner product is called an inner product space.

Recall

Example

- Standard inner product on $\mathbb{R}^{n}:\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i} y_{i}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$
- Standard inner product on $\mathbb{C}^{n}:\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x_{i} \bar{y}_{i}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$
- On the space of polynomials $\mathbb{P}_{n}(\mathbb{R}):\langle\boldsymbol{p}, \boldsymbol{q}\rangle=\int_{-1}^{1} p(x) q(x) \mathrm{d} x$ for $\boldsymbol{p}, \boldsymbol{q} \in \mathbb{P}_{n}(\mathbb{R})$

Proposition

Let V be an inner product space. Then

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq \sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} \sqrt{\langle\mathbf{y}, \mathbf{y}\rangle}
$$

for all $\mathbf{x}, \mathbf{y} \in V$.

Proposition

Let V be an inner product space. Then $\langle\cdot, \cdot\rangle$ induces a norm on V via $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}$ for all $\mathbf{x} \in V$.

Proof.

Note: With this identification the Cauchy-Schwarz inequality can be restated as: $|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in V$.

Example

The norm introduced by the standard inner product on \mathbb{R}^{n} is the Euclidean distance.

Adjoint

Definition

Let U, V be inner product spaces and $S: U \rightarrow V$ be a linear map. The adjoint S^{*} of S is the linear map $S^{*}: V \rightarrow U$ defined such that

$$
\langle S \mathbf{u}, \mathbf{v}\rangle_{V}=\left\langle\mathbf{u}, S^{*} \mathbf{v}\right\rangle_{U} \quad \text { for all } \mathbf{u} \in U, \mathbf{v} \in V
$$

Proposition

Let U, V be inner product spaces and $S: U \rightarrow V$ be a linear map. Then S^{*} is unique and linear.

Proof.

Example

Define $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $S \mathbf{x}=\left(2 x_{1}+x_{3},-x_{2}\right)$. What is the adjoint operator S^{*} ?

Proposition

Let $A \in M_{m \times n}(\mathbb{F})$ be a matrix and $T_{A}: \mathbb{F}^{n} \rightarrow F^{m}: \mathbf{x} \mapsto A \mathbf{x}$. Then, $T_{A}^{*}(\mathbf{x})=A^{*} \mathbf{x}$, where $A^{*} \in M_{n \times m}(\mathbb{F})$ with $\left(A^{*}\right)_{i j}=\overline{A_{j i}}$ for $i=1, \ldots, n$ and $j=1, \ldots, m$.

In particular, if $\mathbb{F}=\mathbb{R}$, the adjoint of the matrix is given by its transpose, denoted A^{T}, and if $\mathbb{F}=\mathbb{C}$, it is given by its conjugate transpose, denoted A^{*}.

Proof for \mathbb{R} :

Definition

A matrix $O \in M_{n}(\mathbb{R})$ is called orthogonal if its inverse is given by its transpose, i.e. $O^{\top} O=O O^{T}=I$.

A matrix $U \in M_{n}(\mathbb{C})$ is called unitary if the inverse is given by the conjugate transpose, i.e. $U^{*} U=U U^{*}=I$.

Example

- Let $\varphi \in[0,2 \pi]$. Then

$$
\left(\begin{array}{cc}
\cos (\varphi) & -\sin (\varphi) \\
\sin (\varphi) & \cos (\varphi)
\end{array}\right)
$$

is an orthogonal matrix. What does it describe geometrically?

- The following is a unitary matrix:

$$
\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Definition

Let $A \in M_{n}(\mathbb{F})$. We call A self-adjoint if $A^{*}=A$. In the case $\mathbb{F}=\mathbb{R}$, such an A is called symmetric and if $\mathbb{F}=\mathbb{C}$, such an A is called Hermitian.

Orthogonality and Gram-Schmidt

Definition

Two vectors $\mathbf{x}, \mathbf{y} \in V$ are called orthogonal if $\langle\mathbf{x}, \mathbf{y}\rangle=0$, denoted $\mathbf{x} \perp \mathbf{y}$. We call them orthonormal if additionally the vectors are normalized, i.e. $\|\mathbf{x}\|=\|\mathbf{y}\|=1$. A basis $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ of V is called orthonormal basis (ONB), if the vectors are pairwise orthogonal and normalized.

Proposition
Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in V$ be orthonormal. Then the system of vectors is linearly independent.
Proof.

Proposition (Orthogonal Decomposition)

Let $\mathbf{x}, \mathbf{y} \in V$ with $\mathbf{y} \neq 0$. Then, there exist $c \in F$ and $\mathbf{z} \in V$ such that $\mathbf{x}=c \mathbf{y}+\mathbf{z}$ with $\mathbf{y} \perp \mathbf{z}$.

Given a basis, we can obtain an ONB from it using the Gram-Schmidt algorithm by repeating this orthogonal decomposition.

Proposition (Gram-Schmidt Algorithm)

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in V$ be a system of linearly independent vectors. Define $\mathbf{y}_{1}=\mathbf{x}_{1} /\left\|\mathbf{x}_{1}\right\|$.
For $i=2, \ldots, n$ define \mathbf{y}_{j} inductively by

$$
\mathbf{y}_{i}=\frac{\mathbf{x}_{i}-\sum_{k=1}^{i-1}\left\langle\mathbf{x}_{i}, \mathbf{y}_{k}\right\rangle \mathbf{y}_{k}}{\left\|\mathbf{x}_{i}-\sum_{k=1}^{i-1}\left\langle\mathbf{x}_{i}, \mathbf{y}_{k}\right\rangle \mathbf{y}_{k}\right\|}
$$

Then the $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$ are orthonormal and

$$
\operatorname{span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}=\operatorname{span}\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right\}
$$

The proof is omitted but can be found in the book.

Recall: connection between matrices and linear maps

Multiplication by a matrix defines a linear map

Let $A \in M_{m \times n}$ be a fixed matrix. Then, we can define a linear map $T_{A}: \mathbb{F}^{n} \rightarrow \mathbb{F}^{m}$ via $T_{A}(\mathbf{v})=A \mathbf{v}$, where we recall matrix vector multiplication $(A \mathbf{v})_{i}=\sum_{k=1}^{n} A_{i k} v_{k}$ for $i=1, \ldots, m$.

Given a bases for U and $V, T: U \rightarrow V$ can be written as a matrix

Let $T \in \mathcal{L}(U, V)$ where U and V are vector spaces. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ be bases for U and V respectively. The matrix of T with respect to these bases is the $m \times n$ matrix $\mathcal{M}(T)$ with entries $A_{i j}, i=1, \ldots, m, j=1, \ldots, n$ defined by

$$
T \mathbf{u}_{k}=A_{1 k} \mathbf{v}_{1}+\cdots+A_{m k} \mathbf{v}_{m}
$$

Eigenvalues

Definition

Given an operator $A: V \rightarrow V$ and $\lambda \in \mathbb{F}, \lambda$ is called an eigenvalue of A if there exists a non-zero vector $\mathbf{v} \in V \backslash\{\mathbf{0}\}$ such that

$$
A \mathbf{v}=\lambda \mathbf{v}
$$

We call such \mathbf{v} an eigenvector of A with eigenvalue λ. We call the set of all eigenvalues of A spectrum of A and denote it by $\sigma(A)$.

Motivation in terms of linear maps: Let $T: V \rightarrow V$ be a linear map, where V is a vector space. We would like to describe the action of this linear map in a particularly "nice" way: such that T acts only by scaling, i.e. $T \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$ where $\lambda_{i} \in \mathbb{F}$ for $i=1, \ldots, n$.

Finding eigenvalues

Note: here we will assume $\mathbb{F}=\mathbb{C}$, so that we are working on an algebraically closed field.

- Rewrite $A \mathbf{v}=\lambda \mathbf{v}$ as
- Thus, if λ is an eigenvalue, we can find the corresponding eigenvectors by finding the null space of $A-\lambda I$.
- The subspace null $(A-\lambda I)$ is called the eigenspace
- To find the eigenvalues of A, one must find the scalars λ such that null $(A-\lambda /)$ contains non-trivial vectors (i.e. not $\mathbf{0}$)
- Recall: We saw that $T \in \mathcal{L}(U, V)$ is injective if and only if null $T=\{\mathbf{0}\}$.
- Thus λ is an eigenvalue if and only if $A-\lambda I$ is not invertible.
- Recall: $|A| \neq 0$ if and only if A is invertible.
- Thus λ is an eigenvalue if and only if

Theorem

The following are equivalent
(1) $\lambda \in \mathbb{F}$ is an eigenvalue of A,
(2) $(A-\lambda I) \mathbf{v}=0$ has a non-trivial solution,
(3) $|A-\lambda I|=0$.

Characteristic polynomial

Definition

If A is an $n \times n$ matrix, $p_{A}(\lambda)=|A-\lambda I|$ is a polynomial of degree n called the characteristic polynomial of A.

To find the eigenvectors of A, one needs to find the roots of the characteristic polynomial.

Example

Find the eigenvalues of

$$
\left[\begin{array}{ll}
4 & -2 \\
5 & -3
\end{array}\right] .
$$

Multiplicity

Definition

The multiplicity of the root λ in the characteristic polynomial is called the algebraic multiplicity of the eigenvalue λ. The dimension of the eigenspace null $(A-\lambda I)$ is called the geometric multiplicity of the eigenvalue λ.

Definition (Similar matrices)

Square matrices A and B are called similar if there exists an invertible matrix S such that

$$
A=S B S^{-1} .
$$

Similar matrices have the same characteristic polynomials and hence the same eigenvalues (see exercise).

Theorem

Suppose A is a square matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be eigenvectors corresponding to these eigenvalues. Then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.

Proof.

Corollary

If a $A \in M_{n}(\mathbb{C})$ has n distinct eigenvalues, then A is diagonalizable. That is there exists an invertible matrix $S \in M_{n}(\mathbb{C})$ such that $A=S D S^{-1}$, where D is a diagonal matrix with the eigenvalues of A in the diagonal.

Theorem
Let $A: V \rightarrow V$ be an operator with n eigenvalues. A is diagonalizable if and only if for each eigenvalue λ, the geometric multiplicity of λ and the algebraic multiplicity of λ are the same.

Example: a diagonalizable matrix

\(\left[\begin{array}{ll}1 \& 2
8 \& 1\end{array}\right]\) is diagonalizable.

Example continued

Example continued

Example: a matrix that is not diagonalizable

$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is not diagonalizable.

References

Howard Anton and Chris Rorres. Elementary Linear Algebra. 11th ed. Wiley, 2014
Axler S. Linear Algebra Done Right. 3rd ed. Undergraduate Texts in Mathematics. Springer, 2015. Available from:
https://link.springer.com/book/10.1007/978-3-319-11080-6
Treil S. Linear Algebra Done Wrong. 2017. Available from: https://www.math.brown.edu/streil/papers/LADW/LADW.html

