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Outline

• Adjoints, unitaries and orthogonal matrices

• Orthogonal decomposition

• Spectral theory
• Eigenvalues and eigenvectors

• Algebraic and geometric multiplicity of eigenvalues

• Matrix diagonalization
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Recall

Definition

Let V be an F-vector space. A function h·, ·i : V ⇥V ! F is called inner product on V
if the following holds:

1 (Conjugate) symmetry: hx, yi = hy, xi for all x, y 2 V , where a denotes the
complex conjugate for a 2 C

2 Linearity in the first argument: h↵x+ �y, zi = ↵hx, zi+ �hy, zi for all x, y, z 2 V
and ↵,� 2 F

3 Positive definiteness: hx, xi � 0 and hx, xi = 0 if and only if x = 0

A vector space equipped with an inner product is called an inner product space.
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Recall

Example

• Standard inner product on Rn: hx, yi =
Pn

i=1 xiyi for x, y 2 Rn

• Standard inner product on Cn: hx, yi =
Pn

i=1 xiy i for x, y 2 Cn

• On the space of polynomials Pn(R): hp,qi =
R 1
�1 p(x)q(x)dx for p,q 2 Pn(R)

Proposition

Let V be an inner product space. Then

|hx, yi| 
p
hx, xi

p
hy, yi

for all x, y 2 V .
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Inner producton Mr(E):(A,B) =Tr(B*A)

-

->

Cauchy-Schwarz Inequality,



Proposition

Let V be an inner product space. Then h·, ·i induces a norm on V via kxk =
p

hx, xi
for all x 2 V .

Proof.

July 26, 2023 5 / 36

(i) Norm:11x120 and 11x11 =0 E) x=0

We have X,x)20 and (x,x) =0
E) X

=0

Props of IP gives us
this

property.
(2) 11 x11 =K11x1)
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IP:112x11 =xEx, =-25(x,x)
= 121x

(3) A inequality (1x+ y1) =1x11 +(y))
Forx.yEV, lIxtyl*= x+y,x+y

= (x,x) +(y,x)
+

(x,y)
+ (y,y)

= 1X +2Rex,y)+1y



Note: With this identification the Cauchy-Schwarz inequality can be restated as:
|hx, yi|  kxkkyk for all x, y 2 V .

Example

The norm introduced by the standard inner product on Rn is the Euclidean distance.
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=((x)12+2)(x,y It Ily
=(x11 +1y)))=



Adjoint

Definition

Let U,V be inner product spaces and S : U ! V be a linear map. The adjoint S⇤ of S
is the linear map S⇤ : V ! U defined such that

hSu, viV = hu, S⇤
viU for all u 2 U, v 2 V .
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Proposition

Let U,V be inner product spaces and S : U ! V be a linear map. Then S⇤ is unique
and linear.

Proof.
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-

-

Uniqueness:Suppose -T,R:VtU s.t. Fuel,FrEU
<Su,=(utr) =(u,Ru)
-

--

I=
=T =R



Proposition

Let U,V be inner product spaces and S : U ! V be a linear map. Then S⇤ is unique
and linear.

Proof.
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S* is linear

<EF. v,wEV,nEU

(u,s*(av +w)) =(Su,qv +w)
=[(Sn,v) +(Sn,w)
=Lu, s*v) +(u,sw)
=(u,xS*v +S*w)

S*(2u +w) =xS*v+S*W



Example

Define S : R3 ! R2 by Sx = (2x1 + x3,�x2). What is the adjoint operator S⇤?
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<5x,yx,S*y),R3. Find S*
Let tR3, yeR.
(Sx,y =((2x, +x3,- x),(y,,yw)

=

y,(2x,+x3) - xay2
=2y,x, +y,xz - y0X2
= ((x,xa,x3), (2y,;yz,yil)is



Proposition

Let A 2 Mm⇥n(F) be a matrix and TA : Fn ! Fm : x 7! Ax. Then, T ⇤
A(x) = A⇤

x,
where A⇤ 2 Mn⇥m(F) with (A⇤)ij = Aji for i = 1, . . . , n and j = 1, . . . ,m.

In particular, if F = R, the adjoint of the matrix is given by its transpose,denoted AT ,
and if F = C, it is given by its conjugate transpose, denoted A⇤.
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=1,S*
S*y =(hy,,- yz,y,)
I

R:<Axxy)
=LX, ATy

K: <Bx,y) =(x,B*y)



Proof for R:
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<Ax,y=EE,Ajix) yi
=Sixil,Ajiy)
~- Aty

= (X,ATy) Rm



Definition

A matrix O 2 Mn(R) is called orthogonal if its inverse is given by its transpose, i.e.
OTO = OOT = I .

A matrix U 2 Mn(C) is called unitary if the inverse is given by the conjugate
transpose, i.e. U⇤U = UU⇤ = I .

July 26, 2023 13 / 36

=>

UtMn(IR):
> =Luxuy) =c, riuy (x,y)

utMn(*
= (x, u*U,y) =(x,y)



Example

• Let ' 2 [0, 2⇡]. Then ✓
cos(') � sin(')
sin(') cos(')

◆

is an orthogonal matrix. What does it describe geometrically?

• The following is a unitary matrix:

✓
0 �i
i 0

◆
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Definition

Let A 2 Mn(F). We call A self-adjoint if A⇤ = A. In the case F = R, such an A is
called symmetric and if F = C, such an A is called Hermitian.

July 26, 2023 15 / 36

A.BtMn(A)
Check that(A,B3 =Tr (B*A)

is an IP, where Tr (A)=E,Ai



Orthogonality and Gram-Schmidt

Definition

Two vectors x, y 2 V are called orthogonal if hx, yi = 0, denoted x ? y. We call them
orthonormal if additionally the vectors are normalized, i.e. kxk = kyk = 1. A basis
x1, . . . , xn of V is called orthonormal basis (ONB), if the vectors are pairwise
orthogonal and normalized.
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Proposition

Let x1, . . . , xk 2 V be orthonormal. Then the system of vectors is linearly independent.

Proof.
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Show 0 = dixi = Ci=0 Fi=1,...,

-Leto=c:=1.Edixill =O

si, 2i xi)0 =11cixill=Li i =1

-EdiXi,ajXi
k

↑

k

=ElitiEi



Proposition (Orthogonal Decomposition)

Let x, y 2 V with y 6= 0. Then, there exist c 2 F and z 2 V such that x = cy+ z with
y ? z.

Given a basis, we can obtain an ONB from it using the Gram-Schmidt algorithm by
repeating this orthogonal decomposition.
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=>0 =E,i =Gi=0 Vi=,

·

yax



Proposition (Gram-Schmidt Algorithm)

Let x1, . . . , xn 2 V be a system of linearly independent vectors. Define y1 = x1/kx1k.
For i = 2, . . . , n define yj inductively by

yi =
xi �

Pi�1
k=1hxi , ykiyk

kxi �
Pi�1

k=1hxi , ykiykk
.

Then the y1, . . . , yn are orthonormal and

span{x1, . . . , xn} = span{y1, . . . , yn}.

The proof is omitted but can be found in the book.
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Recall: connection between matrices and linear maps

Multiplication by a matrix defines a linear map

Let A 2 Mm⇥n be a fixed matrix. Then, we can define a linear map TA : Fn ! Fm via
TA(v) = Av, where we recall matrix vector multiplication (Av)i =

Pn
k=1 Aikvk for

i = 1, . . . ,m.

Given a bases for U and V , T : U ! V can be written as a matrix

Let T 2 L(U,V ) where U and V are vector spaces. Let u1, . . . ,un and v1, . . . , vm be
bases for U and V respectively. The matrix of T with respect to these bases is the
m ⇥ n matrix M(T ) with entries Aij , i = 1, . . . ,m, j = 1, . . . , n defined by

Tuk = A1kv1 + · · ·+ Amkvm.
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Eigenvalues

Definition

Given an operator A : V ! V and ↵ 2 F, � is called an eigenvalue of A if there exists
a non-zero vector v 2 V \ {0} such that

Av = �v.

We call such v an eigenvector of A with eigenvalue �. We call the set of all
eigenvalues of A spectrum of T and denote it by �(T ).

Motivation in terms of linear maps: Let T : V ! V be a linear map, where V is a
vector space. We would like to describe the action of this linear map in a particularly
“nice” way: such that T acts only by scaling, i.e. Tvi = �ivi where �i 2 F for
i = 1, . . . , n.
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X

A *

-

-



Finding eigenvalues

Note: here we will assume F = C, so that we are working on an algebraically closed
field.

• Rewrite Av = �v as

• Thus, if � is an eigenvalue, we can find the corresponding eigenvectors by finding
the null space of A� �I .

• The subspace null(A� �I ) is called the eigenspace

• To find the eigenvalues of A, one must find the scalars � such that null(A� �I )
contains non-trivial vectors (i.e. not 0)

• Recall: We saw that T 2 L(U,V ) is injective if and only if nullT = {0}.
• Thus � is an eigenvalue if and only if A� �I is not invertible.

• Recall: |A| 6= 0 if and only if A is invertible.

• Thus � is an eigenvalue if and only if
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(A - xI =0

--

1A -xI1 =0



Theorem

The following are equivalent

1 � 2 F is an eigenvalue of A,

2 (A� �I )v = 0 has a non-trivial solution,

3 |A� �I | = 0.
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Characteristic polynomial

Definition

If A is an n ⇥ n matrix, pA(�) = |A� �I | is a polynomial of degree n called the
characteristic polynomial of A.

To find the eigenvectors of A, one needs to find the roots of the characteristic
polynomial.
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PALX) =1A -xI1 =0



Example

Find the eigenvalues of 
4 �2
5 �3

�
.
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A =

0 =1A -xI)
= 1*z2x!
= - 23+x)(4 -x) +10
=Y2 - x - 2
=(X - 2)(x +1)

.:X=- 1,2



Multiplicity

Definition

The multiplicity of the root � in the characteristic polynomial is called the algebraic
multiplicity of the eigenvalue �. The dimension of the eigenspace null(A� �I ) is called
the geometric multiplicity of the eigenvalue �.
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Example:p(X) =X- 1)24- 2)(x+3)"



Definition (Similar matrices)

Square matrices A and B are called similar if there exists an invertible matrix S such
that

A = SBS�1.

Similar matrices have the same characteristic polynomials and hence the same
eigenvalues (see exercise).
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Theorem

Suppose A is a square matrix with distinct eigenvalues �1, . . . ,�n. Let v1, . . . , vn be
eigenvectors corresponding to these eigenvalues. Then v1, . . . , vn are linearly
independent.

Proof.
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induction on n: non-zero

Base:winhis independentrector
is

always
Inductive hypothesis:Suppose theclaim holds
-

for K.21. Imparticular, ~......are linearlyindependent.
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Suppose Xx+ is an eigenvale for
A with

eigenvector Vice, and XKX*:x.corresponding
Let 0 = EdiVi ,

ait

ApplyEA-Xit) toboth sides:
0 = d: (A -xxt)vi
=: Avi -Exikvi



Corollary

If a A 2 Mn(C) has n distinct eigenvalues, then A is diagonalizable. That is there
exists an invertible matrix S 2 Mn(C) such that A = SDS�1, where D is a diagonal
matrix with the eigenvalues of A in the diagonal.
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-"
I

I

0 ==,diy i =0 if
... 0 =(ktk + 1

=dk +1
=0



Theorem

Let A : V ! V be an operator with n eigenvalues. A is diagonalizable if and only if for
each eigenvalue �, the geometric multiplicity of � and the algebraic multiplicity of �
are the same.
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Example: a diagonalizable matrix


1 2
8 1

�
is diagonalizable.

July 26, 2023 32 / 36

A=

Find eigenvalues:
0 = 1A - x1) =("y",x) =R- x)2 - 16

= x - 2x
- 15

=(X - 5)(x+3)
... x =- 3,5

Find eigenvectors:



Example continued
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A +31 =(8i)-d)
(b)(ir) =(8)

(1, - 2) spans null (A +bI)

A - 51 =[8" -
y)r[0)

[d(ei) =(8) =c



Example continued
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A =(r
-) ( -3)(2)
S A



Example: a matrix that is not diagonalizable


1 1
0 1

�
is not diagonalizable.
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8 =(B - x1) =1=ix) =(1 - x)2
x =1, w/ multiplicity 2V

algebraic
B - 1 =(8!Y =null(B-I) is

... spanned domeist
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