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Outline

• Logic

• Review of Proof Techniques
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Propositional logic

Propositions are statements that could be true or false. They have a corresponding
truth value.

ex. “n is odd” and “n is divisible by 2” are propositions . Let’s call them P and Q.
Whether they are true or not depends on what n is.

We can negate statements: ¬P is the statement “n is not odd”

We can combine statements:
• P ∧ Q is the statement:
• P ∨ Q is the statement:

We always assume the inclusive or unless specifically stated otherwise.
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Examples

Symbol Meaning
capital letters propositions

=⇒ implies
∧ and
∨ inclusive or
¬ not

• If it’s not raining, I won’t bring my
umbrella.

• I’m a banana or Toronto is in Canada.

• If I pass this exam, I’ll be both happy
and surprised.
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Truth values

Example
If it is snowing, then it is cold out.
It is snowing.
Therefore, it is cold out.

Write this using propositional logic:

How do we know if this statement is true or not?

July 8, 2024 5 / 25

P
G

p = Q



Truth table

If it is snowing, then it is cold out.

When is this true or false?

P =⇒ Q

P Q P =⇒ Q
T T
T F
F T
F F
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Logical equivalence

P =⇒ Q

P Q P =⇒ Q
T T T
T F F
F T T
F F T

¬P ∨ Q

P Q ¬P ¬P ∨ Q
T T
T F
F T
F F

What is ¬(P =⇒ Q)?
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Quantifiers

For all

“for all” (also read “for any”), ∀, is also called the universal quantifier.

If P(x) is some property that applies to x from some domain, then ∀xP(x) means that
the property P holds for every x in the domain.

“Every real number has a non-negative square.” We write this as

How do we prove a for all statement?
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Quantifiers
There exists
“there exists”, ∃, is also called the existential quantifier.
If P(x) is some property that applies to x from some domain, then ∃xP(x) means that
the property P holds for some x in the domain.

4 has a square root in the reals. We write this as

How do we prove a there exists statement?

There is also a special way of writing when there exists a unique element: ∃! .
For example, we write the statement “there exists a unique positive integer square root
of 64” as
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Combining quantifiers

Often we will need to prove statements where we combine quantifiers.
Here are some examples:

Statement Logical expression
Every non-zero rational number has a
multiplicative inverse

∀q ∈ Q \ {0}, ∃s ∈ Q such that qs = 1

Each integer has a unique additive in-
verse

∀x ∈ Z , ∃!y ∈ Z such that x + y = 0

f : R → R is continuous at x0 ∈ R ∀ϵ > 0 ∃δ > 0 such that whenever |x −
x0| < δ, |f(x)− f(x0)| < ϵ

July 8, 2024 10 / 25

Vx &1403 ,
4y & (03(.

+
-

xy=

-

~
XeD

,
E ! ze (it

. x+y = 0

~
270 , 80 St

. (x-XoKE = (f(x)-fix E



Quantifier order & negation

The order of quantifiers is important! Changing the order changes the meaning.
Consider the following example. Which are true? Which are false?

∀x ∈ R ∀y ∈ R x + y = 2
∀x ∈ R ∃y ∈ R x + y = 2
∃x ∈ R ∀y ∈ R x + y = 2
∃x ∈ R ∃y ∈ R x + y = 2

Negating quantifiers:

¬∀xP(x) = ∃x(¬P(x))
¬∃xP(x) = ∀x(¬P(x))
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The negations of the statements above are:
(Note that we use De Morgan’s laws, which are in your exercises:
¬(P ∧ Q) = ¬P ∨ ¬Q and ¬(P ∨ Q) = ¬P ∧ ¬Q.)

Logical expression Negation
∀q ∈ Q \ {0}, ∃s ∈ Q such that qs = 1 ∃q ∈ Q \ {0} such that ∀s ∈ Q, qs ̸=

1 space space space space space space
space space space space

∀x ∈ Z , ∃!y ∈ Z such that x + y = 0 ∃x ∈ Z such that (∀y ∈ Z, x+ y ̸= 0) ∨
(∃y1, y2 ∈ Z such that y1 ̸= y2∧x+y1 =
0 ∧ x + y2 = 0 )

∀ϵ > 0 ∃δ > 0 such that whenever |x −
x0| < δ, |f(x)− f(x0)| < ϵ

∃ϵ > 0 such that ∀δ > 0, |x − x0| < δ
and |f(x)− f(x0)| ≥ ϵ

What do these mean in English?
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Types of proof

• Direct
• Contradiction
• Contrapositive
• Induction
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Direct Proof

Approach: Use the definition and known results.

Example
Claim
The product of an even number with another integer is even.

Approach: use the definition of even.
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Direct Proof

Claim
The product of an even number with another integer is even.

Definition
We say that an integer n is even if there exists another integer j such that n = 2j.
We say that an integer n is odd if there exists another integer j such that n = 2j + 1.

Proof.
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Definition
Let a, b ∈ Z. We say that “a divides b”, written a|b, if the remainder is zero when b is
divided by a, i.e. ∃j ∈ Z such that b = aj.

Example
Let a, b, c ∈ Z with a ̸= 0. Prove that if a|b and b|c, then a|c.

Proof.
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Claim
If an integer squared is even, then the integer is itself even.

How would you approach this proof?
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Proof by contrapositive

P =⇒ Q

P Q P =⇒ Q
T T T
T F F
F T T
F F T

¬Q =⇒ ¬P

P Q ¬P ¬Q ¬Q =⇒ ¬P
T T F F
T F F T
F T T F
F F T T
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Proof by contrapositive

Claim
If an integer squared is even, then the integer is itself even.

Proof.
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Proof by contradiction

Claim
The sum of a rational number and an irrational number is irrational.

Proof.
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Summary

In sum, to prove P =⇒ Q:

Direct proof: assume P, prove Q
Proof by contrapositive: assume ¬Q, prove ¬P
Proof by contradiction: assume P ∧ ¬Q and derive something that is impossible
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Induction

Well-ordering principle for N
Every nonempty set of natural numbers has a least element.

Principle of mathematical induction
Let n0 be a non-negative integer. Suppose P is a property such that

1 (base case) P(n0) is true
2 (induction step) For every integer k ≥ n0, if P(k) is true, then P(k + 1) is true.

Then P(n) is true for every integer n ≥ n0

Note: Principle of strong mathematical induction: For every integer k ≥ n0, if P(n) is
true for every n = n0, . . . , k, then P(k + 1) is true.
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Claim
n! > 2n if n ≥ 4 (n ∈ N).

Proof.
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Claim
Every integer n ≥ 2 can be written as the product of primes.

Proof. We prove this by strong induction on n.

Base case:

Inductive hypothesis:

Inductive step:
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Then
,

by the inductive hypothesis
,
both a and b

can be written by the product of primes.

Thus b+ l = ab can be written ly the product
of prices.
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