Module 1: Proofs Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 8, 2024

Outline

- Logic
- Review of Proof Techniques

Propositional logic

Propositions are statements that could be true or false. They have a corresponding truth value. Propositions are statements that could be true or false. They have a corresponding truth value. Propositions P is true and Q is false. ex. "*n* is odd" and "*n* is divisible by 2" are propositions. Let's call them *P* and *Q*. Whether they are true or not depends on what *n* is.

We can negate statements: $\neg P$ is the statement "*n* is not odd"

We can combine statements:

- and $P \wedge Q$ is the statement: $P \rightarrow Q =$ is odd and "drvisible by 2"
- $P \lor Q$ is the statement: $P \circ Q = "nis \circ dd" \circ r "n is divisible by 2".$ We always assume the inclusive or unless specifically stated otherwise.

PVQ

Examples P=)Q If Pholds, then Qholds. A: it's raining B: I bring my umbrella

Symbol	Meaning
capital letters	propositions
\Rightarrow	implies
$\overline{\wedge}$	and
\vee	inclusive or
_	not

- If it's not raining, I won't bring my umbrella. ¬A ⇒ ¬B
- I'm a banana or Toronto is in Canada.
- If I pass this exam, I'll be both happy and surprised. Q Q

 $Q \rightarrow (R \wedge S)$

Truth values

Example

If it is snowing, then it is cold out. It is snowing. \checkmark Therefore, it is cold out. \bigcirc

Write this using propositional logic:

P=)Q

How do we know if this statement is true or not?

Truth table

If it is snowing, then it is cold out.

When is this true or false?

When P is F, truth value of Q does not metter

What is $\neg(P \implies Q)$?

Quantifiers

For all

"for all" (also read "for any"), $\forall y$ is also called the universal quantifier.

If P(x) is some property that applies to x from some domain, then $\forall x P(x)$ means that the property P holds for every x in the domain. For $cm_7 \neq r_1$, P(x) holds

"Every real number has a non-negative square." We write this as

VreR, x°≥0

How do we prove a for all statement?

Take arbitrary X and show P(X) is true.

Quantifiers

There exists "there exists", \exists , is also called the existential quantifier. If P(x) is some property that applies to x from some domain, then $\exists x P(x)$ means that the property P holds for some x in the domain.

4 has a square root in the reals. We write this as

 $\exists x \in \mathbb{R}, x^2 = 4$

How do we prove a there exists statement?

Find χ such that $P(\chi)$ is frue. There is also a special way of writing when there exists a unique element $\exists!$. For example, we write the statement "there exists a unique positive integer square root of 64" as $\exists! \chi \in \mathcal{A}_{+}, \chi^{2} = 64$

"exists and "northe

Combining quantifiers

Often we will need to prove statements where we combine quantifiers. Here are some examples:

Statement Logical expression Every non-zero rational number has a Vx EQUSOS, 33 EQUSOS EL X2=1 multiplicative inverse Each integer has a unique additive in-6xeg, 2! 3 ez sit. x+y=0 verse $f: \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in \mathbb{R}$ × E70, = 870 s.t. (x-x. (< S =) (f(x) - f(x)) < €

Quantifier order & negation

The order of quantifiers is important! Changing the order changes the meaning. Consider the following example. Which are true? Which are false?

$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y = 2$$
 (F
$$\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x + y = 2$$
 T
$$\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y = 2$$
 F
$$\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x + y = 2$$
 T

Negating quantifiers:

The negations of the statements above are:

÷

(Note that we use De Morgan's laws, which are in your exercises:

$$\neg (P \land Q) = \neg P \lor \neg Q$$
 and $\neg (P \lor Q) = \neg P \land \neg Q$.)

Logical expressionNegation
$$\forall q \in \mathbb{Q} \setminus \{0\}, \exists s \in \mathbb{Q} \text{ such that } qs = 1$$
 $\forall \xi \in \mathbb{Q} \setminus \{0\}, \exists s \in \mathbb{Q} \text{ such that } qs = 1$ $\forall \xi \in \mathbb{Q} \setminus \{0\}, \forall \xi \in \mathbb{Q} \setminus \{0\}, \exists s \in \mathbb{Q} \text{ such that } x + y = 0$ $\forall \xi \in \mathbb{Q} \setminus \{0\}, \forall \xi \in \mathbb{Q} \setminus \{1\}, \forall \xi \in \mathbb$

July 8, 2024 12 / 25

Types of proof

- Direct
- Contradiction
- Contrapositive
- Induction

Direct Proof

Approach: Use the definition and known results.

Example

Claim

The product of an even number with another integer is even.

Approach: use the definition of even.

Direct Proof

Claim

The product of an even number with another integer is even.

Definition

We say that an integer *n* is **even** if there exists another integer *j* such that n = 2j. We say that an integer *n* is **odd** if there exists another integer *j* such that n = 2j + 1.

Proof. Let
$$n, m \in \mathbb{R}$$
 and assume m is even.
Then $2j \in \mathbb{R}$ et. $m = 2j$.
Then $mm = 2j \cdot m = 2(jm) = even by definition.$

Definition

Let $a, b \in \mathbb{Z}$. We say that "a divides b", written a|b, if the remainder is zero when b is divided by a, i.e. $\exists j \in \mathbb{Z}$ such that b = aj.

Example

Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$. Prove that if a|b and b|c, then a|c.

Proof By definition & jerrit. b= aj and > beiz s.t. C= b2 $c=b_{2}=(a_{1})_{2}=a(i_{1})_{1}$ Than Therefore, a direds C.

Claim

If an integer squared is even, then the integer is itself even.

How would you approach this proof?

$$\chi^2 = 2m$$
 $\chi = \sqrt{2m}$?
Direct proof does not work well

Proof by contrapositive

Same.

Proof by contrapositive

Proof by contradiction

Claim

The sum of a rational number and an irrational number is irrational.

Proof. Int LE Q al ZE IR CR Suppose x+3=S & Q That $\frac{y}{1} = \frac{s}{s} - \frac{x}{7} = rational$. instronal $\frac{1}{7} \frac{1}{7}$. Thus, irrational = rational which is a contradiction. SET TORONTO Charleborn, 76+3 must be irrational. July 8, 2024

Summary

In sum, to prove $P \implies Q$:

Direct proof:assume P, prove QProof by contrapositive:assume $\neg Q$, prove $\neg P$ Proof by contradiction:assume $P \land \neg Q$ and derive something that is impossible

Induction

Well-ordering principle for \mathbb{N}

Every nonempty set of natural numbers has a least element.

Principle of mathematical induction

Let n_0 be a non-negative integer. Suppose P is a property such that starting pont

(base case) $P(n_0)$ is true

2 (induction step) For every integer $k > n_0$, if P(k) is true, then P(k+1) is true.

Then P(n) is true for every integer $n \ge n_0$

Note: Principle of strong mathematical induction: For every integer $k > n_0$, if P(n) is true for every $n = n_0, \ldots, k$, then P(k+1) is true.

Claim

 $n! > 2^n$ if $n \ge 4$ $(n \in \mathbb{N})$.

Proof.

÷

Base ase . Suppose
$$m = 4$$
.
LHS = $4! = 24$
 $245 = 2^a = 6$) ... LHS > RHS.
 $2HS = 2^a = 6$) ... LHS > RHS.
 $Inductive . hypothesis Suppose . $4! > 2^k$ for $k \ge 4$.
Then $2^{k+1} = 2 \times 2^k < 2 \times k! < (htt) \times k! = (htt)!$
 $h_7 H_2 inductive hypothesis$
Luniversity of toronto
 $July 8, 2024$ $23/25$$

Claim

Every integer $n \ge 2$ can be written as the product of primes.

Proof. We prove this by strong induction on n.

Base case:

and the second second

than, by the inductive hypothesis, both a ad b can be written by the product of primes. Thus bel = ab can be written by the product of primes.

References

Gerstein, Larry J. (2012). *Introduction to Mathematical Structures and Proofs*. Undergraduate Texts in Mathematics. url: https://link.springer.com/book/10.1007/978-1-4614-4265-3

Lakins, Tamara J. (2016). *The Tools of Mathematical Reasoning*. Pure and Applied Undergraduate Texts.

