Module 1: Proofs Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 8, 2024

Outline

- *•* Logic
- *•* Review of Proof Techniques

Propositional logic

Propositions are statements that could be true or false. They have a corresponding **truth value**. ex. " n is odd" and " n is divisible by 2" are propositions . Let's call them P and Q . Whether they are true or not depends on what n is. ^P Q If $m = 3$, \lceil is true al α is <u>false</u>. **sitional logic**
 positions are statements that could be true or false. They have a corresponding
 h value.

P
 $\frac{p}{\sqrt{2}}$ $\frac{p}{\sqrt{2}}$ $\frac{p}{\sqrt{2}}$ $\frac{p}{\sqrt{2}}$ $\frac{p}{\sqrt{2}}$ $\frac{p}{\sqrt{2}}$ $\frac{p}{\sqrt{2}}$ $\frac{p}{\sqrt{2}}$ r false. The
 $\frac{3}{2}$ \int is it is . Let

is .
 $\frac{1}{2}$ is not od

We can negate statements: $\neg P$ is the statement "*n* is not odd" not P

We can combine statements:

- and $P \wedge Q$ is the statement: P and $Q =$ "nis odd" and "divisible h_Z ?
- *•* P∨Q is the statement: ρ or Q = "nis odd" or "n is divisble by 2" We always assume the inclusive or unless specifically stated otherwise. $\neg P$ is the
 $\neg P$ is the

s:
 \therefore $P \rightsquigarrow$
 \therefore $P \rightsquigarrow$
 \therefore \therefore reither Por Q is true" + " Both Paul Q is true"

Examples $P \Rightarrow Q$ If P holds, then Q holds. A: it's raining
B: I bring my umbrella olds
A: it's ran
B: I bring
it's not raining
it's not raining
nbrella. $h_0(d_5)$

A: it's raining

B: I bring my umbrella

If it's not raining, I won't bring my

umbrella. 7A => 7B

I'm a banana or Toronto is in Canar

: (v > D

If I pass this exam, I'll be both hap

and surprised. Q

- If it's not raining, I won't bring my umbrella. $\frac{m}{\sqrt{a}}$, rwon the
- I'm a banana or Toronto is in Canada. $= 0 \quad \forall x \quad \Rightarrow D$
- *•* If I pass this exam, I'll be both happy and surprised. β : I bring
it's not raining,
it's not raining,
it's not raining,
 $\frac{1}{2}$
if $\frac{1}{2}$ pass this example surprised.
 $\frac{1}{2}$ a banar
 $\frac{1}{2}$ c

pass this

surprise $\frac{\text{happy}}{\beta}$ S

 $Q \Rightarrow (RAS)$

Truth values

Example

If it is snowing, then it is cold out. It is snowing. Therefore, it is cold out. $\,\,\overline{\mathcal{G}}$ P

Write this using propositional logic:

 $P \implies Q$

How do we know if this statement is true or not?

Truth table

If it is snowing, then it is cold out.

When is this true or false?

What is $\neg (P \implies Q)?$

Quantifers

For all

"for all" (also read "for any"), (\forall) is also called the universal quantifier. $\frac{1}{2}$ for all

If $P(x)$ is some property that applies to x from some domain, then $\forall x P(x)$ means that the property P holds for every x in the domain. **The UP (also read "for any")**, (∇) is also called the universal quantifier.

F(x) is some property that applies to x from some domain, then $\forall xP(x)$ means that
 P(x) holds for every x in the domain.

very real nu

"Every real number has a non-negative square." We write this as

number has a non-nega
 $\forall \times \in \mathbb{R}$, $\forall \times \leq 0$

How do we prove a for all statement?

Take arbitrary x and show $P(x)$ is true

Quantifers

There exists "there exists", ∃, is also called the existential quantifer. If $P(x)$ is some property that applies to x from some domain, then $\exists x P(x)$ means that the property P holds for some x in the domain. **antifiers**
There exists
"there exists", $\overline{\bigoplus_{\text{I}}}\overline{P(x)}$ is some p
the property P has **ntifiers**

here exists", θ , is also called the existential quantifier.
 $P(x)$ is some property that applies to x from some domain, then $\exists x P(x)$

he property P holds for some x in the domain.

has a square root in the

4 has a square root in the reals. We write this as

 $\exists x \in \mathbb{R}$, $x^2 = 4$

How do we prove a there exists statement?

There is also a special way of writing when there exists a unique element(\exists !
There is also a special way of writing when there exists a unique element(\exists !) For example, we write the statement "there exists a unique positive integer square root of 64" as f rue

unique element

ue positive integer sque

" exists and "unife

Combining quantifers

Often we will need to prove statements where we combine quantifers. Here are some examples:

Statement Logical expression Every non-zero rational number has a multiplicative inverse $\overline{v_{x} \in \mathbb{R} \setminus \{0\}}, \overline{v_{y}} \in \mathbb{R} \setminus \{0\}$ r.t. $\overline{v_{y}}$ Each integer has a unique additive inverse $\forall x \in \mathcal{Y}$, 2! y ∈ z sit. x+y = 0 $f: \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in \mathbb{R}$ $\overline{4}$ *5*, *5*² *5 5*⁴ *(x-x_e)</sub> < <i>δ* = 3 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$ s a unique additive in-
 $\sigma \times \sigma \times \sqrt{2}$, $\frac{1}{2}$, $\frac{1}{2} \in \mathbb{X}$ sit, $\chi \neq \gamma = 0$
 \n 1.1
 \n 2.70 , $\frac{1}{2}$ δ >0 s.t, $|\chi - \chi_{\circ}| < \delta \implies |f(x) - f(x)| < \epsilon$

Quantifer order & negation

The order of quantifers is important! Changing the order changes the meaning. Consider the following example. Which are true? Which are false? tifier order & negatier
order of quantifiers is importion
isider the following example.

$$
\forall x \in \mathbb{R} \forall y \in \mathbb{R} \ x + y = 2
$$
\n
$$
\forall x \in \mathbb{R} \exists y \in \mathbb{R} \ x + y = 2
$$
\n
$$
\exists x \in \mathbb{R} \forall y \in \mathbb{R} \ x + y = 2
$$
\n
$$
\exists x \in \mathbb{R} \exists y \in \mathbb{R} \ x + y = 2
$$
\n
$$
\exists x \in \mathbb{R} \exists y \in \mathbb{R} \ x + y = 2
$$

Negating quantifiers:

$$
\exists x \in \mathbb{R} \exists y \in \mathbb{R} \ x + y = 2 \quad \top
$$
\n
$$
\begin{array}{lll}\n\text{for } x \neq y \in \mathbb{R} \ x + y = 2 & \text{for } x \in \mathbb{R} \ \text{for } x \neq y \text{ for } x \in \mathbb{R} \ \text{for } x \neq y \text{ for } x \in \mathbb{R} \ \text{for } x \neq y \text{ for } x \ne
$$

The negations of the statements above are:

÷

(Note that we use De Morgan's laws, which are in your exercises:

$$
\neg (P \land Q) = \neg P \lor \neg Q \text{ and } \neg (P \lor Q) = \neg P \land \neg Q.
$$

The negations of the statements above are:
\n(Note that we use De Morgan's laws, which are in your exercises:
\n
$$
\frac{\neg (P \land Q) = \neg P \lor \neg Q \text{ and } \frac{\neg (P \lor Q) = \neg P \land \neg Q)}{\neg (P \lor Q) = \neg P \land \neg Q}
$$
\n
$$
\frac{\text{Logical expression}}{\forall q \in \mathbb{Q} \setminus \{0\}, \exists s \in \mathbb{Q} \text{ such that } qs = 1 \quad \text{P}^c_{\{f \in \mathbb{Q} \setminus \{s\}},} \forall s \in \mathbb{Q} \setminus \{f, g\} \neq \emptyset}
$$
\n
$$
\forall x \in \mathbb{Z} \text{ and } \exists y \in \mathbb{Z} \text{ such that } x + y = 0 \quad \text{P}^c_{\{f \in \mathbb{Q} \setminus \{s\}},} \forall s \in \mathbb{Q} \setminus \{f, g\} \neq \emptyset
$$
\n
$$
\forall x \in \mathbb{Z} \text{ and } \exists y \in \mathbb{Z} \text{ such that } x + y = 0 \quad \text{P}^c_{\{f \in \mathbb{Q} \setminus \{s\}, g\}} \forall s \in \mathbb{Q} \text{ and } y + z \in \{f, g\} \text{ and } \exists y \in \{f, g\} \text{ and } \exists z \in \{g\} \text{ and } \exists z \in
$$

Types of proof

- *•* Direct
- *•* Contradiction
- *•* Contrapositive
- *•* Induction

Direct Proof

Approach: Use the definition and known results.

Example

Claim

The product of an even number with another integer is even.

Approach: use the definition of even.

Direct Proof

Claim

The product of an even number with another integer is even.

Definition

We say that an integer *n* is **even** if there exists another integer *j* such that $n = 2j$.

We say that an integer *n* is odd if there exists another integer *j* such that
$$
n = 2j + 1
$$
.
\nProof. $\lfloor \frac{1}{n} \rfloor$ n_j $m \in \mathbb{Z}$ and $\binom{2}{3} \cdot \binom{2}{4} \cdot \binom{2}{4}$.
\n $\lceil \frac{2}{n} \rceil$ $\binom{2}{5} \cdot \binom{2}{6} \cdot \binom{2}{7} \cdot \binom{2}{1} \cdot \bin$

Definition

Definition
Let *a, b* ∈ ℤ. We say that "a divides b", written a|b, if the remainder is zero when *b* is
divided by a i.e. ∃*i* ∈ ℤ such that *b* — ai divided by a, i.e. $\exists j \in \mathbb{Z}$ such that $b = ai$. say that "a divides b",
 $\exists j \in \mathbb{Z}$ such that $b = a$
ith $a \neq 0$ Prove that if

Example

Let a, b, $c \in \mathbb{Z}$ with $a \neq 0$. Prove that if a b and b|c, then a|c.

Proof. B_7 definition 3 jers (it. $5 = 2$) and 9 kels s.t. C=bk. Thm $C = b4 = (af)6 = a(j4)$ Therefore, a direts C.

Claim

If an integer squared is even, then the integer is itself even.

How would you approach this proof?

$$
x^2 = 2n
$$
 $x = \sqrt{2n}$?
Div=et proof does not work well

Proof by contrapositive

same

Proof by contrapositive

Proof by contradiction

Un by contradiction

Claim

The sum of a rational number and an irrational number is irrational.

Proof. $\downarrow \downarrow$ \uparrow \uparrow \in \mathbb{Q} and \uparrow \uparrow \in $\mathbb{R} \setminus \mathbb{R}$. S_{upper} $\gamma + \gamma = S$ $\subset \mathbb{Q}$ Than $\frac{y}{x} = \frac{5}{x} \approx \frac{1}{x}$ rational rational Thus irrational = rational which is a contradiction ritrational = rational which is a
Thereform, x+3 must be irrational.

Summary

In sum, to prove $P \implies Q$:

Direct proof: assume P, prove Q Proof by contrapositive: assume $\neg Q$, prove $\neg P$
Proof by contradiction: assume $P \wedge \neg Q$ and de assume $P \wedge \neg Q$ and derive something that is impossible

Induction

Well-ordering principle for N

Every nonempty set of natural numbers has a least element.

Principle of mathematical induction

Let n_0 be a non-negative integer. Suppose P is a property such that ciple for $\mathbb N$
t of natural numbers has a least
ematical induction
gative integer. Suppose P is a p
 $\widehat{n_0}$ is true
 $\widehat{n_0}$ is true $\widehat{n_0}$
 $\widehat{n_1}$ $\widehat{n_2}$ $\widehat{n_3}$ $\widehat{n_4}$
 $\widehat{n_2}$ $\widehat{n_0}$, if $\widehat{P_$

1 (base case) $P(n_0)$ is true

$$
shower
$$

2 (induction step) For every integer $k > n_0$, if $P(k)$ is true, then $P(k+1)$ is true.

Then $P(n)$ is true for every integer $n \geq n_0$

Note: Principle of strong mathematical induction: For every integer $k > n_0$, if $P(n)$ is true for every $n = n_0, \ldots, k$, then $P(k+1)$ is true. ast element.

a property such that
 $\frac{1}{2}$

f $P(k)$ is true, then $P(k+1)$ is true.

In: For every integer $k \geq n_0$, if $P(k)$

Iue. Well-ordering principle f
Every nonempty set of na
Principle of mathematic
Let n_0 be a non-negative

(base case) $P(n_0)$ is

(induction step) For

Then $P(n)$ is true for every

Note: Principle of strong

true for every nciple for N

et of natural numbers has a least element.

nematical induction

egative integer. Suppose P is a property such that
 $\gamma(\widehat{n_0})$ is true
 γ is true
 γ is true
 γ is true
 γ is true; γ integer

Claim

Proof.

 $\ddot{\ddot{\bm{\theta}}}$

Claim		
$n! > 2^n$ if $n \geq 4$ ($n \in \mathbb{N}$).		
Proof.	$\beta_{kK\epsilon} \quad \text{as } K \in \mathbb{R}$	$\beta_{k\beta} \quad \text{for} \quad \beta_{k\beta} \quad \$

Claim

Every integer $n \geq 2$ can be written as the product of primes.

Proof. We prove this by strong induction on n. be written as the property of $\frac{1}{2}$

Base case:

Base case:

\n
$$
MZ
$$
.

\n2.5 pr/m .

\n50 Pr of the statement holds trivially.

\nInductive hypothesis:

\nSupp0-t.

\n60 hZZ , on $ME[\frac{1}{2}, \frac{1}{2}]$

\nCauchy of the product of pr/m .

\nInductive step:

\nCauchy of Pr and Pr is the product of Pr and Pr are the product of Pr and <

July 8, 2024 24 / 25

than, by the inductive hypothesis, both a ad b can be written by the product of primes. Thus $A + l = ab$ can be written by the product reduct
of princs.

References

Gerstein, Larry J. (2012). Introduction to Mathematical Structures and Proofs. Undergraduate Texts in Mathematics. url: https://link.springer.com/book/10.1007/978-1-4614-4265-3

Lakins, Tamara J. (2016). The Tools of Mathematical Reasoning. Pure and Applied Undergraduate Texts.

