Module 2: Set Theory Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 9, 2024

Outline

- *•* Review of basic set theory
- *•* Ordered Sets
- *•* Functions

Introduction to Set Theory

- We define a set to be a collection of mathematical objects.
- *•* If S is a set and x is one of the objects in the set, we say x is an element of S and denote it by $x \in S$. n element and $x \in S$
- The set of no elements is called empty set and is denoted by <u>Ø</u>.

$\left(\begin{matrix} 1 \\ 0 \end{matrix}\right)$ $S \subseteq T$, if $s \in S$ implies $s \in$

Definition (Subsets, Union, Intersection)

Let S*,*T be sets.

- We say that S is a *subset* of T, denoted $S \subseteq T$, if $s \in S$ implies $s \in T$.
- We say that $S = T$ if $S \subseteq T$ and $T \subseteq S$. bset of T, denoted
 $S \subseteq T$ and $T \subseteq S$
of S and T, denote
- We define the *union* of *S* and *T*, denoted *S*∪ *T*, as all the elements that are in either S or T. $\frac{1}{\sqrt{2}}$ $\frac{1}{2}$, as all
 $\frac{S \cap T}{S}$
- We define the *intersection* of S and T, denoted S∩T, as all the elements that are in both S and T.
- We say that S and T are disjoint if $S \cap T = \emptyset$.

Some examples

(asb] , (a, b)

Let $A = \{x \in \mathbb{N} : 3|x\}$ and $B = \{x \in \mathbb{N} : 6|x\}$ Show that $B \subseteq A$.

Proof.
$$
L + \pi \in B
$$
.
\n $0, \text{ the definition of } B, \frac{3}{2} \text{ the } E, \text{ s.t. } \pi = 6 \text{ kg}$.
\nThen $\pi = 3 \left(\frac{3}{2} \pi \right) \left(\frac{3}{2} \pi \right) \left(\frac{3}{2} \pi \right)$.

Diference of sets

Definition

Let A*,* B ⊆ X. We defne the set-theoretic diference of A and B, denoted A ** B (sometimes $A - B$) as the elements of X that are in A but not in B. The complement of a set $A \subseteq X$ is the set $A^c := X \setminus A$. A V_B

Set-theoretic difference of A and B, denoted $A \setminus B$

ments of X that are in A but not in B.
 $\{x \in \mathbb{R} : 0 < x \le 40\} = (0, 40]$. Then
 $\{x \in \mathbb{R} : 0 < x \le 40\} = (0, 40]$. Then $\left(\begin{array}{c}\nA \\
A\n\end{array}\right)$ Firce **OI**
attion
 $A, B \subseteq X$. We etimes $A -$
complement $X.$ We
 $A - B$
ment difference of
hat are in A b
 $A^c := X \setminus A$.

Example

Let
$$
X \subseteq \mathbb{R}
$$
 be defined as $X = \{x \in \mathbb{R} : 0 < x \leq 40\} = (0, 40]$. Then
\n
$$
X^c = \begin{bmatrix} -\infty > 0 \end{bmatrix} \begin{bmatrix} 0 \\ 40 \end{bmatrix} \begin{bmatrix} 40 \\ \infty \end{bmatrix}
$$

Recall that for sets S*,*T:

- the *union* of S and T, denoted S∪T, is all the elements that are in *either* S and T
- and the *intersection* of S and T, denoted $S \cap T$, is all the elements that are in both S and T.

We extend the definition of union and intersection to an arbitrary family of sets as follows:

Definition

\n- the *union* of *S* and *T*, denoted
$$
S \cup T
$$
, is all the elements that are in *either S* and *T*
\n- and the *intersection* of *S* and *T*, denoted $S \cap T$, is all the elements that are in *both S* and *T*.
\n- We extend the definition of union and intersection to an arbitrary family of sets as follows:
\n- Definition\n Let S_{α} , $\alpha \in A$, be a family of sets. *A* is called the *index set*. We define\n
$$
\bigcup_{\alpha \in A} S_{\alpha} := \{x : \exists \alpha \text{ such that } x \in S_{\alpha}\},
$$
\n
$$
\bigcap_{\alpha \in A} S_{\alpha} := \{x : x \in S_{\alpha} \text{ for all } \alpha \in A\}.
$$
\n
\n

$$
\bigcup_{n=1}^{\infty} [-n, n] = \mathbb{R}
$$

$$
\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right) = \left\{\delta\right\}
$$

Theorem (De Morgan's Laws)

Let ${S_\alpha}_{\alpha\in A}$ be an arbitrary collection of sets. Then

e Morgan's Laws)
\nbe an arbitrary collection of sets. Then
\n
$$
\left(\bigcup_{\alpha \in A} S_{\alpha}\right)^{c} = \bigcap_{\alpha \in A} S_{\alpha}^{c} \text{ and } \left(\bigcap_{\alpha \in A} S_{\alpha}\right)^{c} = \bigcup_{\alpha \in A} S_{\alpha}^{c}
$$
\n
$$
\left\{\begin{array}{c} \lambda = \left\{\begin{array}{ccc} \lambda & \text{if } \lambda, \lambda \in S_{\alpha} \end{array}\right\} \end{array}\right\}
$$

 Pr

$$
\left(\bigcup_{\alpha\in A} S_{\alpha}\right)^{c} = \bigcap_{\alpha\in A} S_{\alpha}^{c} \text{ and } \left(\bigcap_{\alpha\in A} S_{\alpha}\right)^{c} = \bigcup_{\alpha\in A} S_{\alpha}^{c}
$$
\n
$$
\text{coof. } \bigcup_{\alpha\in A} S_{\alpha} = \left\{\chi : \frac{7}{\alpha}\chi \leq \chi, \frac{7}{\alpha}\chi \leq \chi\right\}.
$$
\n
$$
\left(\bigcup_{\alpha\in A} S_{\alpha}\right)^{c} = \left\{\chi : \frac{7}{\alpha}\chi \leq \chi, \frac{7}{\alpha}\chi \leq \chi\right\}.
$$
\n
$$
\left(\bigcup_{\alpha\in A} S_{\alpha}\right)^{c} = \left\{\chi : \frac{7}{\alpha}\chi \leq \chi\right\}.
$$

To prove the second rect. It, let
$$
T_d = S_d
$$
.

Then , by the first result,

INIVERSITY OF TORONTO v

æ.

$$
\left(\bigcup_{d \in A} T_d\right)^C = \bigcap_{d \in A} T_d
$$
\n
$$
T_{abbg} H_{12} \text{ (com机 of both sides)}
$$
\n
$$
\bigcup_{d \in A} T_d = \left(\bigcap_{d \in A} T_d\right)^C
$$
\n
$$
\bigcup_{d \in A} T_{d} = S_d
$$
\n
$$
\bigcup_{d \in A} S_d = \left(\bigcap_{d \in A} S_d\right)^C
$$

Since a set is itself a mathematical object, a set can itself contain sets.

Definition The power set $P(S)$ of a set S is the set of all subsets of S. Equality and the mathematical object, a set can itsel
inition
power set $\mathcal{P}(S)$ of a set S is the set of all subsets of
mple

Example

Example
Let
$$
S = \{a, b, c\}
$$
.
Then $P(S) = \phi, \{c\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \}$.

If
$$
|5| = n_1
$$
, then $|P(5)| = 2^n$

Another way of building a new set from two old ones is the Cartesian product of two sets.

Definition

Let S, T be sets. The *Cartesian product* $S \times T$ is defined as the set of tuples with elements from S*,*T, i.e g a new set from two

<u>Cartesian product</u> $S \times$
 $S \times T = \{(s, t) : s \in$ a new set from two old ones is the

<u>rtesian product</u> $S \times T$ is defined a
 $S \times T = \{(s, t) : s \in S \text{ and } t \in$

d inductively to a finite family of
 $\begin{bmatrix} z & P \end{bmatrix}$

$$
S \times T = \{ (s, t) : s \in S \text{ and } t \in T \}.
$$

This can also be extended inductively to a finite family of sets.
\n
$$
\zeta = \frac{1}{2} \qquad \qquad \zeta = \frac{1}{2}
$$
\n
$$
\zeta = \frac{1}{2} \qquad \qquad \zeta = \frac{1}{2} \qquad \qquad \zeta = \frac{1}{2} \qquad
$$

Ordered set

IR

Definition

Detinition
A *relation R* on a set X is a subset of X × X. A relation \leq is called a *partial order* on X
if it satisfies if it satisfies

- **D** reflexivity: $\gamma \in \mathcal{X}$
- **D** transitivity: if $\gamma \notin \mathcal{Y}$ and $\gamma \in \mathcal{Z}$, then $\gamma \in \mathcal{Z}$ **D** transitivity: if $\gamma \in \mathcal{Y}$ and $\gamma \in \mathcal{Z}$, then $\gamma \in \mathcal{Z}$
D anti-symmetry: if $\gamma \in \mathcal{Y}$ and $\gamma \in \gamma$, then $\gamma \in \mathcal{Y}$.
-

The pair (X, \leq) is called a *partially ordered set.*

A chain or totally ordered set $C \subset X$ is a subset with the property $x \le y$ or $y \le x$ for any $x, y \in C$. r is alwazs diviermined
hitween any two points in 2024 13/26 **a** anti-syn

The pair $(X, A \text{ chain or } t)$
 $\overline{any \ x, y \in C}$ Definition

A relation R on a set X is a subset of X × X. A relation \leq is called a partial order

if it satisfies

 O erflexivity: $\gamma \leq \gamma$

 O transitivity: $\gamma \leq \gamma$

 O anti-symmetry: $\gamma \leq \gamma$ and $\gamma \$ chain is a subset on which order is always determined

The real numbers with the usual ordering, (\mathbb{R}, \leq) are totally ordered.

Example

The power set of a set X with the ordering given by $\subseteq_{\gamma} (\mathcal{P}(X), \subseteq)$ is a partially ordered set. (\mathbb{R}, \le) are totally ordered
given by \subseteq , $(\mathcal{P}(X), \subseteq)$ is Example

the real numbers with the usual ordering, (\mathbb{R}, \leq) are to

sample

the power set of a set X with the ordering given by
 $\sum_{i} p(x)$ \hat{i} \hat{j} and \hat{k} \hat{k} \hat{l} or den \hat{l}

$$
P(Y) \text{ is not totally ordered}
$$
\n
$$
e.g. \qquad X - \{a,b,c\}
$$
\n
$$
\{a\}, \{b,c\}
$$
\n
$$
\{a\}, \{b,c\}
$$
\n
$$
\{a\} \qquad \{b, c\}
$$

Let $X = \{a, b, c, d\}$. What is $P(X)$? Find a chain in $P(X)$.

 $\mathcal{P}(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{c, d\}, \{b, d\}, \{a, c\}, \{a, d\}, \{a, b, c\},$ *{*b*,* c*,* d*}, {*a*,* b*,* d*}, {*a*,* c*,* d*},* X*}* cample
 $\mathbf{r} \times = \{a, b, c, d\}$. What is $\mathcal{P}(X)$? Find a chain in $\mathcal{P}(X)$.
 $(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{c, d\}, \{b, d\}, \{a, c\}, \{a, c, d\}, \{a, b, d\}, \{a, c, d\}, X\}$
 $\emptyset \quad \bigcap_{\mathcal{P} \in \{a, b\}} \bigcap_{\mathcal{P} \in \{a, b\$ b, c $\}$ c \times chain

Consider the set $C([0,1], \mathbb{R}) := \{f : [0,1] \to \mathbb{R} : f$ is continuous}.

For two functions $f, g \in C([0,1], \mathbb{R})$, we define the ordering as $f \le g$ if $f(x) \le g(x)$ for $\mathbf{v}'_{\mathsf{x}} \in [0,1]$. Then $(C([0,1], \mathbb{R}), \leq)$ is a partially ordered set. Can you think of <u>a chain t</u>hat is a subset of $(C([0,1], \mathbb{R}))$? Example

Consider the set $C([0,1], \mathbb{R}) := \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}.$

For two functions $f, g \in C([0,1], \mathbb{R})$, we define the ordering as $f \leq g$ if $f(x) \leq g(x)$ for $x \in [0,1]$. Then $(C([0,1], \mathbb{R}), \leq)$ is a partially ordered s Example

Consider the set $C([0,1], \mathbb{R}) := \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}$

For two functions $f, g \in C([0,1], \mathbb{R})$, we define the ordering as
 $x \in [0,1]$. Then $(C([0,1], \mathbb{R}), \leq)$ is a partially ordered set.

Can you think of <u>a c</u>

$$
3) \{ f(x) = ax^{2}: a c | P \}
$$

Definition

A non-empty partially ordered set (X,\leq) is *well-ordered* if every non-empty subset $A \subseteq X$ has a mimimum element. ty partially ordered
a mimimum element well-ordere

Example:

Example:

\n
$$
(\mathbb{N}, \leq) \text{ is...} \quad \text{with} \quad \text{and} \
$$

Definition

Let (X, \leq) be a partially ordered set and $S \subset X$.

Then $x \in X$ is an *upper bound* for S if for all $s \in S$ we have $s \leq x$. Similarly, $y \in X$ is a lower bound for \overline{S} if for all $s \in S$, $y \leq s$. and $S \subseteq X$.

if for all $s \in S$ we have $s \leq$
 \overline{S} if for all $s \in S$, $y \leq s$.

we call S bounded above
 d below. If S is bounded a

If there exists an upper bound for S , we call S bounded above and if there exists a lower bound for S, we call S bounded below. If S is bounded above and bounded below, we say S is bounded. d $S \subseteq X$.

for all $s \in S$ we have

if for all $s \in S$, $y \leq s$

e call *S bounded abc*

below. If *S* is bounde

We can also ask if there exists a least upper bound or a greatest lower bound.

Definition

Let (X, \leq) be a partially ordered set and $S \subseteq X$.

We call $x \in X$ *least upper bound* or <u>supremum,</u> denoted $x = \sup S$, if x is an upper bound and for any other upper bound $y \in X$ of S we have $x \le y$. st upper bound or a greatest lower bound.

: and $S \subseteq X$.

supremum, denoted $x = \sup S$, if x is an upp

ind $y \in X$ of S we have $x \le y$. We can also ask if there exists a least upper bound or a greatest k

Definition

Let (X, \leq) be a partially ordered set and $S \subseteq X$.

We call $x \in X$ *least upper bound* or <u>supremum,</u> denoted $x = \sup S$,

bound and for any o denoted $x = \sup S$, if x is an up
 $\frac{S}{S}$ we have $x \le y$.
 $\frac{\text{infimum}}{\text{er } S}$, denoted $x = \inf S$
 $\sqrt{\in X}$, $y \le x$.

Likewise, $x \in X$ is the greatest lower bound or infimum for S, denoted $x = \inf S$, if it is a lower bound and for any other lower bound $y \in X$, $y \leq x$.

$S = X > P$

Note that the supremum and infimum of a bounded set do not necessarily need to exist. However, if they do exists they are unique, which justifies the article the (exercise). Nevertheless, the reals have a remarkable property, which we will take as an axiom. so ask if there exists a least up

) be a partially ordered set and
 $\in X$ *least upper bound* or *supr*
 \bigcap for any other upper bound y
 $x \in X$ is the *greatest lower bou*

bund and for any other lower b

the suprem a greatest lower bound.
 $1 x = \frac{\sup S_i}{s}$ if x is an upper
 $\frac{\sup x \le y}{}$.

for S, denoted $x = \frac{\inf S_i}{s}$ if
 $\le x$.

A $S \le x > \sqrt{2}$

do not necessarily need to exercise)

ch we will take as an axiom

$$
S = \frac{(0,1)}{100}
$$
 $-S = (-1,0)$

Completeness Axiom

Let $S \subseteq \mathbb{R}$ be bounded above. Then there exists $r \in \mathbb{R}$ such that $r = \sup S$, i.e. S has a least upper bound. $S = \frac{(\delta, 1)}{\delta h}$, $-S = (-1, 0, 1)$

Completeness Axiom

et $S \subseteq \mathbb{R}$ be bounded above. Then there exists $r \in \mathbb{R}$ such the

east upper bound. se. the supremun erists $r = \sup S$, i.e. S has

By setting $S' = -S := \{-s: \; s \in S\}$ and noting inf $S = -$ sup S' , we obtain a similar statement for infma if S is bounded below. As mentioned above, this property is fairly special, for example it fails for the rationals.

Example

Let $S = \{q \in \mathbb{Q} : x^2 < 7\}$. Then S is bounded above in \mathbb{Q} , but there exists no least upper bound in Q.

$$
4\sqrt{x^{2}-7}
$$
, $x=1\sqrt{7}$

There is a nice alternative characterization for suprema in the real numbers.

Proposition

Let $S \subseteq \mathbb{R}$ be bounded above. Then $r = \sup S$ if and only if r is an upper bound and for all $\epsilon > 0$ there exists an $s \in S$ such that $r - \epsilon < s$.

Proof. (4) only if part.
\nSuppose. But
$$
\frac{1}{2}g_{20}
$$
, for $\frac{1}{5}g_{5}g_{5}$.
\nSuppose. But $\frac{1}{2}g_{20}$, for $\frac{1}{5}g_{5}g_{5}$.
\n $\frac{1}{1}g_{5}g_{5}$ and upper hold of 5.
\nHowever, $r-e_{5}$ is smaller than sup 3. This is a artpodiction.

Using the same trick, we may obtain a similar result for infma.

Example

Consider
$$
S = \{1/n : n \in \mathbb{N}\}
$$
. Then $\sup S = 1$ and $\inf S = 0$.

Functions

Definition

A function f from a set X to a set Y is a subset of $X \times Y$ with the properties:

• For every
$$
x \in X
$$
, there exists a $y \in Y$ such that $(x, y) \in f$

$$
\bullet \ \text{If} \ (x, y) \in f \text{ and } (x, z) \in f \text{, then } y = z.
$$

 X is called the *domain* of f . **nctions**

Definition

A function *f* from a set *X*
 O For every $x \in X$, there
 Q If $(x, y) \in f$ and (x, z)
 X is called <u>the *domain* of</u>

How does this connect to

How does this connect to other descriptions of functions you may have seen?

Definition (Image and pre-image)

Let $f: X \to Y$ and $A \subseteq X$ and $B \subseteq Y$.

- The *image* of *f* is the set $f(A) := \{f(x) : x \in A\}$.
- The *pre-image* of *f* is the set $f^{-1}(B) := \{x : f(x) \in B\}.$

Helpful way to think about it for proofs:

Image: If $y \in f(A)$, then $y \in Y$, and there exists an $x \in A$ such that $y = f(x)$. **Pre-image:** If $x \in f^{-1}(B)$, then $x \in X$ and $f(x) \in B$.

Definition (Surjective, injective and bijective)

Let $f: X \rightarrow Y$, where X and Y are sets. Then

- *f* is *injective* i<u>f $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$ </u>
- f is surjective if for every $y \in Y$, there exists an $x \in X$ such that $y = f(x)$
- *f* is *bijective* if it is both injective and surjective

Example

Let $f: X \to Y$, $x \mapsto x^2$. f is surjective if $X = \mathbb{R}$, $Y = \mathbb{R}$, f is injective if \quad K = $\,$ $\mathsf{R}_{\,$ $\mathsf{Z}}$ o f is bijective if X ⁼ Y ⁼ 120 f is neither surjective nor injective if ctive, injective and bijective)

ere X and Y are sets. Then

<u>if $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$ </u>

if for every $y \in Y$, there exists an $x \in X$ such that $y = f(x)$

if it is both injective and surjective
 $\iff f(x) = \uparrow$
 $\$ X= IR , Y= IR

 θ ther $\gamma_1 = \gamma_2$

References

Marcoux, Laurent W. (2019). PMATH 351 Notes. url: https://www.math.uwaterloo.ca/ lwmarcou/notes/pmath351.pdf

Runde ,Volker (2005). A Taste of Topology. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). Lecture notes in Mathematics for Economics and Statistics. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

