Module 3: Set theory and metrics Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 10, 2024

Outline

- More on set theory
- Cardinality of sets
- Metrics and norms

Recall

Definition (Image and pre-image)

Let $f: X \to Y$ and $A \subseteq X$ and $B \subseteq Y$.

- The *image* of f is the set $f(A) := \{f(x) : x \in A\}$.
- The pre-image of f is the set $f^{-1}(B) := \{x : f(x) \in B\}.$

Definition (Surjective, injective and bijective)

Let $f: X \rightarrow Y$, where X and Y are sets. Then

- f is injective if $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2) \iff f(x_1) \in f(x_1) \in f(x_1)$, then $\gamma_1 = \gamma_2$
- f is surjective if for every $y \in Y$, there exists an $x \in X$ such that y = f(x)
- f is bijective if it is both injective and surjective

(f) Y = f(x)

Proposition

Y OF TORONTO

Let $f: X \to Y$ and $A \subseteq X$. Prove that $A \subseteq f^{-1}(f(A))$, with equality $\frac{d}{d} f$ is injective. Proof. First we prove A C f1(f(A)) Let a EA. We need to show a E f-(f(A)) We need to show, $f(a) \in f(A)$ This is fined since a EA. (if part) Suppose fis injective Some we already know A C f- (f(A)), it suffices to show $f^{-1}(f(A)) \subset A$

If
$$\alpha \in f^{\gamma}(f(A))$$
.
Then $f(\alpha) \in f(A)$.
Therefore, $\exists \alpha' \in A$ s.t. $f(\alpha) = f(\alpha')$.
Size f is injective, $f(c) = f(\alpha')$ implies $\alpha = \alpha' \in A$.
Thus, if part is completed.

Cardinality

Intuitively, the *cardinality* of a set A, denoted |A|, is the number of elements in the set. For sets with only a finite number of elements, this intuition is correct. We call a set with finitely many elements finite.

We say that the empty set has cardinality 0 and is finite.

Proposition

If X is finite set of cardinality n, then the cardinality of $\mathcal{P}(X)$ is 2^n .

Proof.

Definition Two sets A and B have same cardinality, |A| = |B|, if there exists bijection $f: A \to B$. 1 suchen + Surjuction Which is bigger, \mathbb{N} or \mathbb{N}_0 ? A. $(\mathbb{N}) = (\mathbb{N}_0)$ NUS03 Lt f! N I No be f(n) = m - 1. then f is both rejection and surjection. Therefore, f is bijection.

Cantor-Schröder-Bernstein

Definition

We say that the cardinality of a set A is less than the cardinality of a set B, denoted $|A| \leq |B|$ if there exists an injection $f: A \rightarrow B$.

Proof that
$$|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$$
:
Lt $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ be $f(n) = (n, 1)$.
(hu $n \neq m$ inplus $f(n) = (n, 1) \neq (n, 1) \in f(m)$)
So, f is injective.
Lf $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
 $g(n, m) = 2^n 3^m$
 $zf g(n, m) = g(n', m'), then $2^n 3^m = 2^{m'} 3^{m'}$.
Then country the expant of primes 2.3, we have $N \ge N'$. Musical sciences
UNIVERSITY OF TORONTO$

Definition

Let A be a set.

- **1** A is *finite* if there exists an $n \in \mathbb{N}$ and a bijection $f: \{1, \ldots, n\} \to A$
- **2** A is *countably infinite* if there exists a bijection $f: \mathbb{N} \to A$
- **3** A is *countable* if it is finite or countably infinite
- **4** A is *uncountable* otherwise

Example

The rational numbers are countable, and in fact $|\mathbb{Q}| = |\mathbb{N}|$.

Proof. First we show $|\mathbb{N}| \leq |\mathbb{Q}^+|$. We first show $|\mathbb{N}| = |\mathcal{B}|$.

Next, we show that $|Q^+| \leq |N \times N|$. Next we show |Q| = |2|. Let $f: 2 \rightarrow Q$ be f(2) = 2. Then f is clearly injection. Only king left is construct injectine $2 \cdot Q \rightarrow 2$.

For any VED, we can write $\frac{2}{3}$: $\frac{2}{6}$

 $\gamma = \frac{p}{2r}$ when $p \in \mathcal{D}$, $q \in \mathcal{N}$, p and q are. matadly prime.


```
We can extend this to {\mathbb Q} as follows:
```


Theorem

The cardinality of \mathbb{N} is smaller than that of (0, 1).

Proof.

First, we show that there is an injective map from $\mathbb N$ to (0,1).

$$-t \quad f' : N \rightarrow (0, 1) \quad hx \quad F(m) = \frac{1}{n+1}$$

Next, we show that there is no surjective map from \mathbb{N} to (0, 1). We use the fact that every number $r \in (0, 1)$ has a binary expansion of the form $r = 0.\sigma_1\sigma_2\sigma_3...$ where $\sigma_i \in \{0, 1\}, i \in \mathbb{N}$.

Proof.

Now we suppose in order to derive a contradiction that there does exist a surjective map f from N to (0, 1), i.e. for $n \in \mathbb{N}$ we have $f(n) = 0.\sigma_1(n)\sigma_2(n)\sigma_3(n)\dots$ This means we can list out the binary expansions, for example like 6 Mai) f(1) = 0.00000000...f(2) = 0.1111111111...f(3) = 0.01 01010101... f(4) =0.10101010... We will construct a number $\tilde{r} \in (0, 1)$ that is not in the image of f. ful ref(N)

Proof.

Define $\tilde{r} = 0.\tilde{\sigma}_1 \tilde{\sigma}_2 \dots$, where we define the *n*th entry of \tilde{r} to be the the opposite of the *n*th entry of the *n*th item in our list:

$$\tilde{\sigma}_n = \begin{cases} 1 & \text{if } \sigma_n(n) = 0, \\ 0 & \text{if } \sigma_n(n) = 1. \end{cases} \qquad \qquad \tilde{\sigma}_n \neq \sigma_n(n) \text{ for and} \end{cases}$$

Then \tilde{r} differs from f(n) at least in the *n*th digit of its binary expansion for all $n \in \mathbb{N}$. Hence, $\tilde{r} \notin f(\mathbb{N})$, which is a contradiction to f being surjective. This technique is often referred to as Cantor's diagonal argument.

Proposition

(0,1) and $\mathbb R$ have the same cardinality.

We have shown that there are different sizes of infinity, as the cardinality of \mathbb{N} is infinite but still smaller than that of \mathbb{R} or (0,1). In fact, we have

 $|\mathbb{N}| = |\mathbb{N}_0| = |\mathbb{Z}| = |\mathbb{Q}| \lt |\mathbb{R}|.$

Because of this, there are special symbols for these two cardinalities: The cardinality of \mathbb{N} is denoted \aleph_0 while the cardinality of \mathbb{R} is denoted \mathfrak{c} . In fact there are many other cardinalities, as the following theorem shows:

Theorem (Cantor's theorem)

For any set A, $|A| < |\mathcal{P}(A)|$.

Metric Spaces

disting between two points.

Definition (Metric)

A metric on a set X is a function $d: X \times X \to \mathbb{R}$ that satisfies: (a) Positive definiteness: $\int (\gamma, \gamma) \geq 0$ for $\forall \gamma, \gamma$. $\sim d(\chi, \gamma) = 0$ (b) Symmetry: $d(\chi, \gamma) = d(\gamma, \gamma)$ (c) Triangle inequality: $d(\gamma, \gamma) + d(\gamma, \gamma) \geq d(\gamma, \gamma)$

A set together with a metric is called a metric space.

Example (\mathbb{R}^n with the Euclidean distance)

$$d(x_{1}2) = \int_{i^{2}1}^{\infty} (x_{i}-y_{0})^{2} , \quad f(x_{1}y_{0}) \in \mathbb{R}^{n},$$

$$0_{n} = (x_{1}-2), \quad d(x_{1}y_{0}) = (x_{1}-2).$$

Example (*p*-norm on \mathbb{R}^n)

The *p*-norm is defined for $p \ge 1$ for a vector $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ as

$$\|\chi\|_{p} = \left(\sum_{i=1}^{n} (\chi_{i})^{p}\right)^{p}$$

when $p=2$, 2 -norm = endedra norm.

The infinity norm is the limit of the *p*-norm as $p \to \infty$, defined as

$$\|\chi\|_{\omega} = \max_{c} \|\chi_{c}\|$$

Example (*p*-norm on $C([0,1];\mathbb{R})$)

If we look at the space of continuous functions $C([0, 1]; \mathbb{R})$, the *p*-norm is

$$\|f\|_{p} = \left(\int_{\sigma}^{\prime} (f(x))^{p} dx\right)^{\prime p}$$

and the $\infty-{\sf norm}$ (or sup norm) is

$$\|f\|_{\infty} = \max_{x \in [0,1]} |f(x)|$$

Definition

A subset A of a metric space (X, d) is *bounded* if there exists M > 0 such that d(x, y) < M for all $x, y \in A$.

Definition

Let (X, d) be a metric space. We define the *open ball* centred at a point $x_0 \in X$ of radius r > 0 as

$$B_r(x_0) := \{ x \in X : d(x, x_0) < r \}.$$

Example

In \mathbb{R} with the usual norm (absolute value), open balls are symmetric open intervals, i.e.

$$\beta_{r}(\infty) = (\gamma_{o} - r, \gamma_{tr})$$

Example: Open ball in \mathbb{R}^2 with different metrics

References

Runde, Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). *Lecture notes in Mathematics for Economics and Statistics*. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

