Module 3: Set theory and metrics Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 10, 2024

Outline

- *•* More on set theory
- *•* Cardinality of sets
- *•* Metrics and norms

Recall

Definition (Image and pre-image)

Let $f: X \to Y$ and $A \subset X$ and $B \subset Y$.

- The *image* of *f* is the set $f(A) := {f(x) : x \in A}$.
- The *pre-image* of *f* is the set $f^{-1}(B) := \{x : f(x) \in B\}.$

Definition (Surjective, injective and bijective)

Let $f: X \rightarrow Y$, where X and Y are sets. Then

- **•** *f* is *injective* if $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2) \iff f(f(x_1) \in f(x_2)$, then $f(x_1 \in X_2)$
- f is surjective if for every $y \in Y$, there exists an $x \in X$ such that $y = f(x)$ \Leftrightarrow $Y = f(x)$
- *f* is *bijective* if it is both injective and surjective

Proposition

TY OF TORONTO

Let $f: X \to Y$ and $A \subseteq X$. Prove that $A \subseteq f^{-1}(f(A))$, with equality $\frac{df}{df}f$ is injective. Proof. First we prome $A \subset f^4(\text{f(A-1)})$ $\frac{A \subseteq f^{-1}(\mathit{f(A)})}{\left(\frac{f(A)}{f(A')}\right)}$ 计
$L+$ a ϵA . We need to show $\alpha \in f^{-1}(f(A))$. It a ϵ A. We need to show a ϵ .
We need to show, $f(\alpha)$ ϵ $f(A)$. Ve nud to show, f(a) \in f(
This is fried since a $\in A$ & if part)· Suppose f is injective. Some we already know $A \subset f^{-1}(f(A))$, it suffrees to show $f^{-1}(f(A)) \subset A$

Let
$$
\alpha \in f^1(f(n))
$$
.

\nThus $f(\alpha) \in f(A)$.

\nThus α α $\in A$ $s.f.$ $f(\alpha) = f(\alpha')$.

\nSince f is infinite, $f(c) = f(\alpha')$ and $\alpha = \alpha' \in A$.

\nThus, if part is coupled.

Cardinality

Intuitively, the cardinality of a set A, denoted *|*A*|*, is the number of elements in the set. For sets with only a finite number of elements, this intuition is correct. We call a set with finitely many elements finite.

We say that the empty set has cardinality 0 and is finite.

Proposition

If X is finite set of cardinality n, then the cardinality of $P(X)$ is 2^n .

Proof.

$$
X = \begin{cases} x_1, -1, x_0 \\ x_1, -1, x_0 \end{cases} \begin{cases} \text{Let } A \subset X \\ \text{for each} \\ \text{if } A \subset X \end{cases}
$$

Then are *n* elements in X .

$$
\begin{cases} \text{there are } n \text{ elements in } X \\ \text{for } n \text{ for all } n \text{ then } x_0 \end{cases}
$$

Definition Two sets A and B have same cardinality, $|A|=|B|$, if there exists bijection $f\colon A\to B.$ Example Which is bigger, $\mathbb N$ or $\mathbb N_0$? $\qquad \qquad A$. $\qquad \qquad \|\ell\| \in \left(\mathcal{N}_\circ\right)$ IA) Infection + surjection $\frac{1}{\sqrt{1-\frac{1}{1-\$ $WUSO$ Lt $f : \mathbb{N} \to \mathbb{N}$, be $f(n) = n-1$. $f : \mathcal{N} \to \mathcal{N}$, be $f(n) = \mathcal{M} - 1$.
Then $f \cap s$ bell expection and sarjection. Thenfore, firs bijection,

Cantor-Schröder-Bernstein

Definition

We say that the cardinality of a set A is less than the cardinality of a set B , denoted $|A| \leq |B|$ if there exists an injection $f: A \rightarrow B$. Definit
We say
|A| \leq |

Proof that *|*N*|* = *|*N × N*|*: Lot ^f : ^N ⁺ NYN be f(m) ⁼ (m . 1)· than MEM implis f(n) ⁼ (n, 1) ⁼ (h, 1) ⁼ firm) So, f is injective. Let ⁹ : NYN ⁺ I ^m n g(n, m) ⁼ 23 then ²² gi - 24 zou & If gm, m) : gla, m), men ³ , we have turn, Then conting the export of primes 2, This & is injective.

Definition

Let A be a set.

- **1** A is finite if there exists an $n \in \mathbb{N}$ and a bijection $f: \{1, \ldots, n\} \rightarrow A$
- **2** A is countably infinite if there exists a bijection $f: \mathbb{N} \to A$
- \bigcirc A is countable if it is finite or countably infinite
- **4** A is *uncountable* otherwise

Example

The rational numbers are countable, and in fact $|\mathbb{Q}| = |\mathbb{N}|$.

Proof. First we show *[|]*N*[|]* [≤] *[|]*Q+*|*. We first show IN) ⁼ (*)·

Next, we show that *[|]*Q+*[|]* [≤] *[|]*^N [×] ^N*|*. Next, we show that
 $\mu_{c\gamma}f \qquad \nu c \qquad 5$ Next, we show that $|Q^+| \leq |N \times N|$.
 $N \times f$ $V \subseteq$ show $|Q| =$
 $| \cup |$ $| \leq | \cup |$ $| \cup |$ $| \leq | \cup |$ Next we show $|Q| = |Z|$. Next ve show $|0| = |2|$.
Lit $f: 2 \to 0$ he $f(2) = 2$. This of its clearly injection Only this left is construct injection $a: \mathbb{R} \to \mathbb{R}$.

For any $Y \in \text{B}$, we can write $\frac{2}{3}$: $\frac{2}{6}$
 $Y = \frac{p}{6}$ when $\psi \in \mathcal{P}$, $\theta \in \mathbb{N}$, p and q are.


```
We can extend this to \mathbb Q as follows:
```


Theorem

The cardinality of N is smaller than that of $(0, 1)$.

Proof.

First, we show that there is an injective map from $\mathbb N$ to $(0,1)$.

$$
Let f: \mathbb{N} \to (0,1) \quad \text{for } \mathbb{N} \text{ is } (0,1).
$$

Next, we show that there is no surjective map from $\mathbb N$ to $(0, 1)$. We use the fact that every number $r \in (0,1)$ has a binary expansion of the form $r = 0.\sigma_1 \sigma_2 \sigma_3 \ldots$ where $\sigma_i \in \{0, 1\}, i \in \mathbb{N}.$ ler than that of $(0, 1)$.

an injective map from N to $(0, 1)$.
 $\|\psi \to (\theta) / (\int \theta_{\kappa} + \int f(\theta) \sin \theta) \sin \theta$

no surjective map from N to $(0, 1)$. We use the f.

a binary expansion of the form $r = 0. \sigma_1 \sigma_2 \sigma_3 ...$ w

Proof.

Now we suppose in order to derive a contradiction that there does exist a surjective map f from N to $(0, 1)$., i.e. for $n \in \mathbb{N}$ we have $f(n) = 0 \cdot \sigma_1(n) \sigma_2(n) \sigma_3(n) \ldots$ This means we can list out the binary expansions, for example like $f(1) = 0.00000000...$ $f(2) = 0.101111111...$ $f(3) = 0.0101010101...$ $f(4) = 0.1010101010...$ We will construct a number $\tilde{r} \in (0,1)$ that is not in the image of f. of.

v we suppose in order to derive a contradiction that there does exist

b f from N to (0, 1)., i.e. for $n \in \mathbb{N}$ we have $f(n) = 0.\sigma_1(n)\sigma_2(n)\sigma_3(n)$

ins we can list out the binary expansions, for example like
 $f(1) =$ exist a surjective $n)\sigma_3(n)\ldots$ This $_{\mathscr{L}}$ NCI) σ'' $\widehat{\nu_{\bm{x}}(\bm{x})}$ diagonal entries \int_{0}^{∞} dragonal entries
s not in the image of f.
 \int_{0}^{∞} \sqrt{n} $\left(\frac{1}{n}\right)^{n}$ $\left(\frac{1}{n}\right)^{n}$

Proof.

Define $\tilde{r} = 0.\tilde{\sigma}_1\tilde{\sigma}_2...$ where we define the *n*th entry of \tilde{r} to be the the opposite of the nth entry of the nth item in our list:

$$
\tilde{\sigma}_n = \begin{cases} 1 & \text{if } \sigma_n(n) = 0, \\ 0 & \text{if } \sigma_n(n) = 1. \end{cases} \implies \begin{cases} \tilde{\sigma}_k + \sigma_n(n) & \text{if } \sigma_n(n) = 1. \\ \tilde{\sigma}_k + \sigma_n(n) & \text{if } \sigma_n(n) = 1. \end{cases}
$$

Then \tilde{r} differs from $f(n)$ at least in the *n*th digit of its binary expansion for all $n \in \mathbb{N}$.
Hence, $\tilde{r} \notin f(\mathbb{N})$, which is a contradiction to f being surjective. This technique is often referred to as Hence, $\tilde{r} \notin f(N)$, which is a contradiction to f being surjective. This technique is often referred to as Cantor's diagonal argument. F.

e $\tilde{r} = 0.\tilde{\sigma}_1 \tilde{\sigma}_2 \ldots$, where

ntry of the *n*th item in (

F differs from $f(n)$ at le

e, $\tilde{r} \not\in f(\mathbb{N})$, which is a c

ed to as Cantor's diagor

Proposition

$(0,1)$ and $\mathbb R$ have the same cardinality.

We have shown that there are different sizes of infinity, as the cardinality of N is infinite but still smaller than that of $\mathbb R$ or $(0,1)$. In fact, we have

 $|N| = |N_0| = |Z|$ $\exists |Q| < |R|$ *.*

Because of this, there are special symbols for these two cardinalities: The cardinality of Because of this, there are special symbols for these two c
N is denoted \aleph_0 , while the cardinality of R is denoted ϵ . In fact there are many other cardinalities, as the following theorem shows:

Theorem (Cantor's theorem)

For any set A , $|A| < |\mathcal{P}(A)|$.

Metric Spaces

distan between two points.

Definition (Metric)

- A *metric* on a set X is a function $d: X \times X \to \mathbb{R}$ that satisfies: Definition (Metric)
A *metric* on a set *X* is a f
(a) Positive definiteness: on $(Metric)$
 $\frac{1}{2}$ on a set X is a
- $\begin{align} & \tan d: \frac{X \times X \rightarrow \mathbb{R}}{\sqrt{2}} \text{ that satisfy} \ & \int d^3x \, \mathcal{L} \rightarrow \mathbb{R} \end{align}$ and $d(\gamma, \gamma) = 0$ if X= Y
- (b) Symmetry: $d(x,y) = d(y,x)$
- (c) Triangle inequality: $d(\gamma, \gamma) + d(\gamma, \gamma) \geq d(\gamma, \gamma)$

A set together with a metric is called a metric space.

Example $(\mathbb{R}^n$ with the Euclidean distance)

$$
(\mathbb{R}^{n} \text{ with the Euclidean distance})
$$
\n
$$
d(\Upsilon, \Upsilon) = \sqrt{\sum_{i=1}^{n} (\Upsilon_{i} - \Upsilon_{i})^{2}} \qquad \qquad \Upsilon_{\Upsilon, \Upsilon} \leq |\mathbb{R}^{n}.
$$
\n
$$
0_{\Upsilon_{1}} \qquad \qquad d(\Upsilon, \Upsilon_{2}) = (\Upsilon - \Upsilon).
$$

Example (p -norm on \mathbb{R}^n)

The *p*-norm is defined for $p \ge 1$ for a vector $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ as

$$
||x||_{p} = \left(\sum_{i=1}^{m} |x_{i}|^{p}\right)^{1/p}
$$

uhm $p=2$, $2-norm = enckolar form$.

The infinity norm is the limit of the p-norm as $p \to \infty$, defined as

$$
|| \gamma ||_{\omega} = \max_{\hat{c}} |\gamma_{c}|
$$

Example $(p$ -norm on $C([0,1]; \mathbb{R})$)

If we look at the space of continuous functions $C([0,1];\mathbb{R})$, the p-norm is

$$
\|\operatorname{fl}\rho = \left(\int_0^1 |\operatorname{frr}|^p d\lambda\right)^{1/p}
$$

and the ∞−norm (or sup norm) is

¹¹ fllo =max ^I fl

Definition

A subset A of a metric space (X*,* d) is bounded if there exists M *>* 0 such that $d(x, y) < M$ for all $x, y \in A$. Definitior
A subset *,*
d(x, y) < .

Definition

Let (X, d) be a metric space. We define the *open ball* centred at a point $x_0 \in X$ of radius $r > 0$ as pen ball ce

$$
B_r(x_0) := \{x \in X : d(x, x_0) < r\}.
$$

Example

In $\mathbb R$ with the usual norm (absolute value), open balls are symmetric open intervals, i.e. Xtr)

$$
\beta_{\gamma}(x) = (\chi_{s} - r, \chi_{t}r)
$$

Example: Open ball in \mathbb{R}^2 **with different metrics**

References

Runde, Volker (2005). A Taste of Topology. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). Lecture notes in Mathematics for Economics and Statistics. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

