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Outline

® Open and closed sets

® Sequences

® Cauchy sequences
® subsequences
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Definition (Open and closed sets)

Let (X, d) be a metric space.
® Aset UC Xis open if for every x € U there exists € > 0 such that B.(x) C U.
® Aset FC Xis closed if F¢:= X\ F is open.

Note:

Proposition

Let (X, d) be a metric space.
@ Let A1, Ay C X. If Ay and Ay are open, then A1 N Ay is open.
® IfA; C X, i€ | are open, then Ujc/A; is open.
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Proof. (1) Let A1, A2 C X. If A1 and A, are open, then A; N Ay is open.

(2) If A; C X, i€ I are open, then Ujc/A; is open.
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Using DeMorgan, we immediately have the following corollary:

Let (X, d) be a metric space.
@ Let A1, Ay C X. If Ay and As are closed, then Ay U Ay is closed.
® IfA; C X, i€l are closed, then NjcjA; is closed.
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Definition (Interior and closure)
Let A C X where (X, d) is a metric space.

® The closure of Ais A :=
® The interior of A is 2\ o=

® The boundary of A is 0A :=

Let X = (a, b] C R with the ordinary (Euclidean) metric. Then
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Proposition

Let A C X where (X, d) is a metric space. Then A=A \ OA.

Proof-
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Proposition

Let (X, d) be a metric space and A C X. A is closed and Ais open.

Proof.

In fact, A = U{U: Uis open and U C A} and A = {F: Fis closed and A C F}.
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Sequences

Definition (Sequence)

Let (X, d) be a metric space. A sequence is an ordered list of points x,, n € N, in X,
denoted (xn)nen. We say that a sequence (x,)nen converges to a point x € X if
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Recall: A =

Proposition

Let (X, d) be a metric space, and let A C X. Then A is equal to the set of points in X
which are limits of a sequence in A.

Proof.
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A set F C X, where (X, d) is a metric space, is closed if and only if every sequence in F
which converges in X converges to a point in F.

Remark:
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Cluster points of a set

Definition

Let (X, d) be a metric space and A C X. A point x € X is a cluster point of A (also
called accumulation point) if for every e > 0, B(x) contains infinitely many points in A.
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Proposition
x € Xis a cluster point of A C X where (X, d) is a metric space if and only if there
exists a sequence of points x, € A, n € N, such that x, — x.

Proof-

Statistical Sciences
UNIVERSITY OF TORONTO
July 12, 2024 13/1



Combining the previous result with the limit characterization of closure gives the
following:

For A C X, (X, d) a metric space, we have

A= AU{x€ X: xis a cluster point of A}.
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Cauchy sequences

Definition (Cauchy sequence)

Let (X, d) be a metric space. A sequence denoted (xp)neny € X is called a Cauchy
sequence if
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Proposition

Let (X, d) be a metric space, and let (x,)qen be a convergent sequence in X. Then
(Xn)nen is Cauchy.

Proof.
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Definition

A metric space where every Cauchy sequence converges (to a point in the space) is
called complete.

Example:

Let (X, d) be a metric space, and let Y C X.
(i) If X'is complete and if Y'is closed in X, then Y'is complete.
(ii) If Yis complete, then it is closed in X.
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Proof.
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Subsequences

Definition
Let (xn)nen be a sequence in a metric space (X, d). Let (ng)ken be a sequence of
natural numbers with ny < ny < ---. The sequence (x,, )ken is called a subsequence of

(Xn)nen- If (xn,)ken converges to x € X, we call x a subsequential limit.

((=1)")pen
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Proposition
A sequence (x,)nen in @ metric space (X, d) converges to x € X if and only if every
subsequence of (xp)nen also converges to x.

Proof-
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Proof continued
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