Module 4: Metric Spaces II Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 12, 2024

Outline

 $- d(x, y) \ge 0 \quad \text{all} \quad d(x, y) = 0 \quad \text{iff} \quad x > y.$ - d(x, y) = d(y, x) $- d(x, y) + d(y, z) \ge d(x, z).$

- Open and closed sets
- Sequences
 - Cauchy sequences
 - subsequences

Definition (Open and closed sets)

Let (X, d) be a metric space.

- A set $U \subseteq X$ is open if for every $x \in U$ there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq U$.
- A set $F \subseteq X$ is *closed* if $F^c := X \setminus F$ is open.

Note: Q, X are both open and closed

I can be intereste

Proposition

Let (X, d) be a metric space.

1 Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are open, then $A_1 \cap A_2$ is open. \rightarrow on be extended to 2 If $A_i \subseteq X$, $i \in \mathbb{N}$ are open, then $\bigcup_{i \in I} A_i$ is open. *Proof.* (1) Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are open, then $A_1 \cap A_2$ is open. Lt rEAMA2. Sim A: is open, $\stackrel{=}{=} E_1 > O$ s.t. $\beta_{E_1}(x) \subset A_1$ Sinc A: is open, $\stackrel{=}{=} E_2 > O$ sit. $\beta_{E_2}(x) \subset A_2$. Lt \mathcal{E} = min ($\mathcal{E}_{1}, \mathcal{E}_{2}$). Then $\mathcal{B}_{\mathcal{E}}(\mathbf{x}) \subset \mathcal{B}_{\mathcal{E}_{1}}(\mathbf{x}) \subset \mathcal{A}_{1}$ and $\mathcal{B}_{\mathcal{E}}(\mathbf{x}) \subset \mathcal{B}_{\mathcal{E}_{2}}(\mathbf{x}) \subset \mathcal{A}_{1}$. Thus $\mathcal{B}_{\mathcal{E}}(\mathbf{x}) \subset \mathcal{A}_{1} \land \mathcal{A}_{2}$. (2) If $A_i \subseteq X$, $i \in I$ are open, then $\bigcup_{i \in I} A_i$ is open. Ltx e U.Ac. ° c rd. x E Ac. Son Ac 15 open 2 EDO 18. BECKICAC CUAi

Using DeMorgan, we immediately have the following corollary:

Corollary

Let (X, d) be a metric space.

- **1** Let $A_1, A_2 \subseteq X$. If A_1 and A_2 are closed, then $A_1 \cup A_2$ is closed.
- **2** If $A_i \subseteq X$, $i \in I$ are closed, then $\bigcap_{i \in I} A_i$ is closed.

Definition (Interior and closure)

Let $A \subseteq X$ where (X, d) is a metric space.

- The closure of A is $\overline{A} := \left\{ x \in X : \psi_{\xi > 0}, \beta_{\varepsilon}(x) \cap A \neq \phi \right\}$
- The interior of A is $\mathring{A} := \left\{ x \in A : \overset{\mathfrak{d}}{\underset{\epsilon}{\mathsf{E}}} \right\} (\mathfrak{s}, \mathfrak{g}_{\epsilon}(\mathfrak{s}) \in A \right\}$
- The boundary of A is $\partial A := \begin{cases} \chi \in \chi : \forall \Sigma > 0 & \text{s.t.} & B \in (X) \land A \neq \emptyset & \text{cut} & B \in (X) \land A \neq \emptyset \end{cases}$

Example

Let
$$X = (a, b] \subseteq \mathbb{R}$$
 with the ordinary (Euclidean) metric. Then
 $\overline{\chi} = (a, b]$, $\overset{\circ}{\chi} = (a, b)$, $\partial X = \{a, b\}$
check!

Let
$$A \subseteq X$$
 where (X, d) is a metric space. Then $\mathring{A} = A \setminus \partial A$.

Proof. We show
$$A \subset A \cup A A$$
 and $A \cup A A \subset A$ separately.
(Proof of $A \subset A \cup \partial A$)
Let $x \in A$. B_7 deduction, $\stackrel{?}{=} E > 0$ s.t. $B_L(K) \subset A$. $\int control N + the.$
Suppose $x \in \partial A$. B_7 definition, $B_E(K) \cap A^C \neq \beta$
This is a antiradication, therefore $x \in A \cup \partial A$.
(Proof of $A \cup \partial A \subset A$)
Let $x \in A \cup \partial A$. Sinc $x \notin \partial A$, $\stackrel{?}{=} E > 0$ s.t. $B_E(K) \cap A = \varphi$ or $B_E(K) \cap A^C = \varphi$.
Sinc $x \in A$, $B_E(K) \cap A \neq \varphi$. Thus, $B_E(K) \cap A^C = \varphi \otimes B_E(K) \cap A$.
Therefore, $x \in A$.

July 12, 2024 7 / 1

Let (X, d) be a metric space and $A \subseteq X$. \overrightarrow{A} is closed and \overleftrightarrow{A} is open.

Proof. A is the largest open set CA is obvious from definition.
to show
$$\overline{A}$$
 is closed, we need to show \overline{A}^{c} is open.
Let $x \in \overline{A}^{c}$. then by definition of \overline{A} , $\overline{2} \in 200$ set. $B_{c}(x) \cap A = \overline{P}$.
We need to show $B_{c}(x) \subset \overline{A}^{c}$. Let $\overline{y} \in B_{c}(x)$.
Then, let $\widehat{c} = \varepsilon - d(x, \overline{y})$.
Then $B_{\overline{c}}(\overline{A}) \subset B_{\varepsilon}(\overline{x}) \subset \overline{A}^{c}$. This energy $\overline{P} \in \overline{A}^{c}$.
Thus $B_{c}(x) \subset \overline{A}^{c}$.

smellest clored ret 2 A

Remark

In fact,
$$\mathring{A} = \bigcup \{ U : U \text{ is open and } U \subseteq A \}$$
 and $\overline{A} = \bigcap \{ F : F \text{ is closed and } A \subseteq F \}$.

largent open at CA

Furthermore,
$$\overline{A}$$
 is the smallest closed set $2A$.
(Pf.) Let \overline{F} be a closed set $F^2 A$.
We must show $F^2 \overline{A} \iff F^2 \subset \overline{A}^2$.
Let $x \in F^2 \subset A^2$. Since F^2 is open, $2E_{20}$ set.
 $B_{\overline{z}}(\overline{x}) \subset F^2 \subset A^2$.
Suppose $\overline{x} \in \overline{A}$. Then by distribution, $B_{\overline{z}}(\overline{x}) \wedge A \neq \overline{y}$.
This is a contradiction.
Then for $\overline{x} \notin \overline{A} \iff \overline{x} \in \overline{A}^2$.

Sequences

Definition (Sequence)

Let (X, d) be a metric space. A sequence is an ordered list of points x_n , $n \in \mathbb{N}$, in X, denoted $(x_n)_{n \in \mathbb{N}}$. We say that a sequence $(x_n)_{n \in \mathbb{N}}$ converges to a point $x \in X$ if

Recall:
$$\overline{A} = \left\{ \chi \in X \right\}^{\vee} \left\{ \chi \in X \right\}^{$$

Let (X, d) be a metric space, and let $A \subseteq X$. Then \overline{A} is equal to the set of points in X which are limits of a sequence in A.

Proof.
$$\overline{A} = \{x \in X^{\perp} \ \exists \{x_{n}\} \in A \text{ s.t. } x_{n} \rightarrow x \}$$

(proof of C)
Let $x \in \overline{A}$. By dufinition, $\forall \Sigma > 0$, $B_{\Sigma}(x) \land A \neq \emptyset$.
Let $\Sigma = \frac{1}{2}$. Then $B_{K}(x) \land A \neq \emptyset$.
Prock $T_{n} \in B_{X_{n}}(x) \land A$. Then $T_{n} \in A$ and $d(x_{n}, x) \in t_{n}$.
For $o_{Y} \geq 0$, by tady $\frac{1}{m_{\Sigma}} \leq 2 \ll m_{\Sigma} > \varepsilon^{-1}$. Then $f_{n} = m_{Z} m_{Z}$,
 $d(x_{n}, x) < t_{n} \leq \frac{1}{m_{Z}} \ll \varepsilon$.

(proof of)) L-(x be the limit of {xn3CA. Lt 200. By definition of Onvergency ² ME set. M Z ME imples d(xn, x) < E. (=) xn ∈ BE(x). At the same time time A by distriction. Thus Ju ∈ BE(x) NA. There for BE(x) NA ≠ Q.

$$\overline{A} = \left\{ \chi e \chi : \frac{2}{\pi} \left\{ \pi_{1} \right\} c A \quad \text{s.t. } \pi_{1} \rightarrow \pi \right\}$$

Corollary

A set $F \subseteq X$, where (X, d) is a metric space, is closed if and only if every sequence in F which converges in X converges to a point in F.

Remark: F is closed \Leftrightarrow F = F \Leftrightarrow $F = \{x \in X : \Im\{x, 3 \in F : x\}, \forall x \to \Im\{x\}, \forall x \to \emptyset\}, \forall x \to \emptyset\{x\}, \forall x \to \emptyset\{x\}, \forall x \to \emptyset\{x\}, \forall x \to \emptyset\}, \forall x \to \emptyset\{x\}, \forall x \to \emptyset\}, \forall x \to \emptyset\},$

Cluster points of a set

Definition

Let (X, d) be a metric space and $A \subseteq X$. A point $x \in X$ is a *cluster point* of A (also called accumulation point) if for every $\epsilon > 0$, $B_{\epsilon}(x)$ contains infinitely many points in A.

(but \$ ESO, BECKI A (AL{73) = 4

 $x \in X$ is a cluster point of $A \subseteq X$ where (X, d) is a metric space if and only if there exists a sequence of points $x_n \in A$, $n \in \mathbb{N}$, such that $x_n \to x$.

Proof. 7h +X X is cluster point = " XINGA, XNEX Sit. XI + X. (=) By detruiton Find By (x) AA sit. The X-sime (BYG(X) AA = 00. then for The I holds. $(\Leftarrow) \quad Supper \stackrel{\mathcal{F}}{\to} \{x_1\} \subset A \quad s.t. \quad \mathcal{T}_n \to \mathcal{T}_n, \quad \mathcal{T}_n \neq \mathcal{T}_n$ For any ETO, PME S.t. MZME inplaces d(XWX) < E. this for an MZME, The B(x) A. tistical Sciences JVERSITY OF TORONTO Charter (BECX) AA =00 July 12, 2024 13/1 Combining the previous result with the limit characterization of closure gives the following:

Corollary For $A \subseteq X$, (X, d) a metric space, we have $\overline{A} = A \cup \{x \in X : x \text{ is a cluster point of } A\}.$ why not A = { dustry points of A } ralso in A but not a cluster point OF TORONTO

Cauchy sequences

Definition (Cauchy sequence)

Let (X, d) be a metric space. A sequence denoted $(x_n)_{n \in \mathbb{N}} \in X$ is called a *Cauchy* sequence if

$$\forall 270, ? n_{\varepsilon}$$
 (if, $n, m \ge n_{\varepsilon} \Longrightarrow d(\pi, \pi_m) < \varepsilon$

Let (X, d) be a metric space, and let $(x_n)_{n \in \mathbb{N}}$ be a convergent sequence in X. Then $(x_n)_{n \in \mathbb{N}}$ is Cauchy.

Proof. Lt
$$\pi_n \to \pi$$
.
For *200, $^{2}m_{c}$ sut. $d(\pi_n, \pi) < \frac{\epsilon}{2}$.
By twingle meanshift, for * $m, n \ge m_{c}$,
 $d(\pi_n, \pi_n) \le d(\pi_n, \pi) + d(\pi_n, \pi) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.

Definition

A metric space where every Cauchy sequence converges (to a point in the space) is called *complete*.

Proposition

Let (X, d) be a metric space, and let $Y \subseteq X$.

- (i) If X is complete and if Y is closed in X, then Y is complete.
- (ii) If Y is complete, then it is closed in X.

Proof.

Lt {m3 C Y is Candy. (i) for 3 C X and X is complete. fo Xy -> x GX Sun I is closed the limit of converget sequere must be MT. Sim Y is complete, every converget sequen in Y converges (6) to a point ng. This equivalent to say if is closed.

Subsequences

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in a metric space (X, d). Let $(n_k)_{k\in\mathbb{N}}$ be a sequence of natural numbers with $n_1 < n_2 < \cdots$. The sequence $(x_{n_k})_{k\in\mathbb{N}}$ is called a *subsequence* of $(x_n)_{n\in\mathbb{N}}$. If $(x_{n_k})_{k\in\mathbb{N}}$ converges to $x \in X$, we call x a *subsequential limit*.

A sequence $(x_n)_{n \in \mathbb{N}}$ in a metric space (X, d) converges to $x \in X$ if and only if every subsequence of $(x_n)_{n \in \mathbb{N}}$ also converges to x.

Proof continued

References

Charles C. Pugh (2015). *Real Mathematical Analysis*. Undergraduate Texts in Mathematics. https://link-springer-com.myaccess.library.utoronto.ca/book/10.1007/978-3-319-17771-7

Runde ,Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). *Lecture notes in Mathematics for Economics and Statistics*. url: http://84.89.132.1/ piotr/docs/RealAnalysisNotes.pdf

