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Outline

• Open and closed sets

• Sequences
• Cauchy sequences
• subsequences
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- dIX, g) 10 an diy : 0 if X = Y.

- d(x , z) = d(b, x)

- d(X, z) + d(g, z) = dix,z).



Definition (Open and closed sets)
Let (X, d) be a metric space.

• A set U ⊆ X is open if for every x ∈ U there exists ϵ > 0 such that Bϵ(x) ⊆ U.
• A set F ⊆ X is closed if Fc := X \ F is open.

Note:

Proposition
Let (X, d) be a metric space.

1 Let A1,A2 ⊆ X. If A1 and A2 are open, then A1 ∩ A2 is open.
2 If Ai ⊆ X, i ∈ I are open, then ∪i∈IAi is open.
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Proof. (1) Let A1,A2 ⊆ X. If A1 and A2 are open, then A1 ∩ A2 is open.

(2) If Ai ⊆ X, i ∈ I are open, then ∪i∈IAi is open.
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Using DeMorgan, we immediately have the following corollary:

Corollary
Let (X, d) be a metric space.

1 Let A1,A2 ⊆ X. If A1 and A2 are closed, then A1 ∪ A2 is closed.
2 If Ai ⊆ X, i ∈ I are closed, then ∩i∈IAi is closed.
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Definition (Interior and closure)
Let A ⊆ X where (X, d) is a metric space.

• The closure of A is A :=

• The interior of A is
◦
A :=

• The boundary of A is ∂A :=

Example
Let X = (a, b] ⊆ R with the ordinary (Euclidean) metric. Then
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Proposition
Let A ⊆ X where (X, d) is a metric space. Then

◦
A = A \ ∂A.

Proof.
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Proposition
Let (X, d) be a metric space and A ⊆ X. A is closed and

◦
A is open.

Proof.

Remark
In fact,

◦
A =

⋃
{U : U is open and U ⊆ A} and A =

⋂
{F : F is closed and A ⊆ F}.
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Furthermore, A is the smallest closedirt) A
.
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Sequences

Definition (Sequence)
Let (X, d) be a metric space. A sequence is an ordered list of points xn, n ∈ N, in X,
denoted (xn)n∈N. We say that a sequence (xn)n∈N converges to a point x ∈ X if

July 12, 2024 9 / 1

↓ 90 FMg EIN Sat
.

dAn ,x) < E FME Ma



Recall: A =

Proposition
Let (X, d) be a metric space, and let A ⊆ X. Then A is equal to the set of points in X
which are limits of a sequence in A.

Proof.
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(Proof of 3)
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Corollary
A set F ⊆ X, where (X, d) is a metric space, is closed if and only if every sequence in F
which converges in X converges to a point in F.

Remark:
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Cluster points of a set

Definition
Let (X, d) be a metric space and A ⊆ X. A point x ∈ X is a cluster point of A (also
called accumulation point) if for every ϵ > 0, Bϵ(x) contains infinitely many points in A.
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Proposition
x ∈ X is a cluster point of A ⊆ X where (X, d) is a metric space if and only if there
exists a sequence of points xn ∈ A, n ∈ N, such that xn → x.

Proof.
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Combining the previous result with the limit characterization of closure gives the
following:

Corollary
For A ⊆ X, (X, d) a metric space, we have

A = A ∪ {x ∈ X : x is a cluster point of A}.
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Cauchy sequences

Definition (Cauchy sequence)
Let (X, d) be a metric space. A sequence denoted (xn)n∈N ∈ X is called a Cauchy
sequence if
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Proposition
Let (X, d) be a metric space, and let (xn)n∈N be a convergent sequence in X. Then
(xn)n∈N is Cauchy.

Proof.
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Definition
A metric space where every Cauchy sequence converges (to a point in the space) is
called complete.

Example:

Proposition
Let (X, d) be a metric space, and let Y ⊆ X.
(i) If X is complete and if Y is closed in X, then Y is complete.
(ii) If Y is complete, then it is closed in X.
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Proof.
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Subsequences

Definition
Let (xn)n∈N be a sequence in a metric space (X, d). Let (nk)k∈N be a sequence of
natural numbers with n1 < n2 < · · · . The sequence (xnk)k∈N is called a subsequence of
(xn)n∈N. If (xnk)k∈N converges to x ∈ X, we call x a subsequential limit.

Example
((−1)n)n∈N
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Proposition
A sequence (xn)n∈N in a metric space (X, d) converges to x ∈ X if and only if every
subsequence of (xn)n∈N also converges to x.

Proof.
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Proof continued
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