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Last time

Looked at open and closed sets.
Discussed sequences, which includes Cauchy sequences and subsequences:
e Convergent sequence: x, — x < Ve > 03 n. € N s.t. d(x,,x) < e forall n> n,

® Cauchy sequence: Ve > 0 dn. € N s.t. d(xp, xm) < € for all n,m > n,

Proved that a convergent sequence is Cauchy

® Discussed complete metric spaces, where all Cauchy sequences converge (like R
with the usual metric, absolute value)

Proved that a sequence converges to x if and only if all subsequences converge to x
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Outline for today

e Continuity
® Equivalent metrics

® Density and separability
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Continuity

Definition

Let (X, dx) and (Y, dy) be metric spaces, let xp € X, and let f: X — Y. /f_\is/gczn\tiﬁ@/s
at xg if for every sequence (xp)nen in X that converges to xg, we have

limp 00 A(Xn) = AX0)-

We say that fis continuous if it is continuous at every point in X.
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Let (X, dx) and (Y, dy) be metric spaces, let xg € X, and let f: X — Y. The following
are equivalent:

C ()(4,\/\’"'«.9 Ab?f'/-\l t\"v‘\)

(i) fis continuous(at xo
(ii) for all e > 0, there exist@> 0 such that dy(f(x), f(x0))) < € for all x € X with
dx(x, x0) < 0 departs on G,
(iii) for each € > 0, there is 6 > 0 such that Bs(xo) C f 1(B.(f(x)))
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o o T (s
(i) fis continuous at xg 1R, f ) - ‘F )

(ii) for all € > 0, there exists § > 0 such that dy(f(x), {x))) < € for all x € X with
dx(x,x0) < &
(iii) for each € > 0, there is § > 0 such that Bs(xp) C f1(B.(fx0)))
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Corollary

Let (X, dx) and (Y, dy) be metric spaces and let f: X — Y. The following are
equivalent:

(i) fis continuous e~ X
(ii) if UC Yis open, then £ 1(U) is open £~ Turs 15 wsd o5 Aot o€
(iii) if FC Yis closed, then f~1(F) is closed oty for gonoved

‘f,., Folcgjm( ffﬁ[ﬂél
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We need the following results about sets and functions:
Let X and Ybesetsand f: X— Y. Let A/BC Y. Then

® ACB = f1(A)Cf(B)

@ 1Y\ A) =X\ f(A) (eweree )

Proof. Let (X, dx) and (Y, dy) be metric spaces and let f: X — Y.
(i) = (ii): )
(A T €T he gpm, Wi wonf & e $(T) 5 gpen,
(4 we S} T T E T ek g
Thon eavfs 0 1t Be(4=) C T .
Seo £ o5 corbeas ot A, T oo g M
Guee B (F9) €T | e L £(Be(F™)) ¢ £7(U)

+ . L -
s e Ths, e bt o By®) ¢ f(17) L Thes TO0) 55 N
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(i) = () Wi will prove flo guovebt defoni i GO of cubimdy al ~.,
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(ii) = (i) b B O be clored,
thew  ANE o5 open,

B, fHH\F) 5 gpea,
Howoror,  FACIVE) = X\ £7CR).
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Definition
Let (X, dx) and (Y, dy) be metric spaces and let f: X — Y. does wef pA 00 A
® fis uniformly continuous if for all ¢ > 0, there exist uch that for every
xl,x;e\mmﬂ < 9, we have dy(f(x1), f(x2))) < €
® fis Lipschitz continuous if there exists a K > 0 such that for every x1, x> € X we
have dy(f(x1), (x2))) < Kdx(x1, x2)

Let (X, dx) and (Y, dy) be metric spaces and let f: X — Y.

fis Lipschitz continuous = f is uniformly continuous =- f is continuous

Proof is one of your exercises.
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Contraction Mapping Theorem

Definition
Let (X, d) be a metric space and let f: X — X. We say that x* € Xis a fixed point of f
if fix*) = x*.

v

Definition
Let (X, d) be a metric space and let f: X — X. fis a contraction if there exists a
constant k € [0, 1) such that for all x,y € X, d(f(x), (ly))) < kd(x, y).

.

Observe that a function is a contraction if and only if it is Lipschitz continuous with
constant K < 1.

Theorem (Contraction Mapping Theorem)

Suppose that f: X — X is a contraction and the metric space X is complete. Then f
has a unique fixed point x*.
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Let f: [—%, %] — [—%, %] be defined by the mapping x — x*. Assume we use the
standard Euclidean metric, d(x,y) = [x — y|. fhas a unique fixed point because

L]j 3 , Bl o M!\[‘L{_L
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Equivalent metrics

Definition (Equivalent metrics)

Two metrics d; and d, on a set X are equivalent if the identity maps from (X, d;) to
(X, d2) and from (X, d») to (X, dy) are continuous.

Two metrics dq, d» on a set X are equivalent if and only if they have the same open
sets or the same closed sets.
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Definition
Two metrics d; and d> on a set X are strongly equivalent if for every x, y € X, there
exists constants a > 0 and 8 > 0 such de ol oy ove

€n lv{ e U
adh(x,y) < dalxy) < B ) Fefy s rf

If two metrics are strongly equivalent then they are equivalent. The proof of this is one
of the exercises.
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We show that the Euclidean distance (induced by 2-norm) and the metric induced by
the oo-norm are equivalent on R".

a B - o /kc',
x-31), = W AT g (7
F o) £ m J- b

W 6% (%ol = W
[T - Ui,

Can you think of an example that we've seen of a metric that isn't equivalent to the

i ic? N
+ StEauI;!lgllIngescgn metric @)‘—C}’Cf .
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Density

Definition

Let (X, d) be a metric space. A subset A C X is called dense if A= X.

Dediniteon of 73(- = %766—)( S Y0, Bs)n A"?//(E
FJ‘(/M //{LFS we Ceh (o

A CX s deuge
Why are dense sets important?
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Examples
L (R,[-])

<£l T} itw{t = ﬁz‘

2. Let X be a set and define d: X x X — R by

0, x=y,
«&n={1 x4y

ZLL'(_ 0'4(7 of-tnse Sn’f M X r's X H‘{"'H

(ereveise )
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Definition

A metric space (X, d) is /s\eparable if it contains a countable dense subset.
T T —

Example: \P‘ s §4WW“‘7(L G M @ Y coum'l—f%{,g
A 0(0/\(’( .
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Define loo = {(Xn)nen : Xn € R, sup,en |Xa| < 00}, the space of bounded real valued

sequences. Endow /., with a metric induced by the supremum norm, namely
d((%n)nens (Yn)nen) = SUPpen [Xn — ¥n|- Then £ is not separable with respect to the
topology induced by this metric.

Note: this proof relies on content from the cardinality section. Specifically, Cantor's
theorem gives us that |A| < [P(A)| for any set A.

Proof. gb—ppﬂft- S Cjw rs o C{,Mﬁhh p{u«vfﬁ 6:@@5«/‘(\.
Lt S = { R, L 4 e/N;
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