Module 5: Metric spaces III Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 15, 2024

Last time

Looked at open and closed sets.

Discussed sequences, which includes Cauchy sequences and subsequences:

- Convergent sequence: $x_n \to x \Leftrightarrow \forall \epsilon > 0 \exists n_{\epsilon} \in \mathbb{N} \text{ s.t. } d(x_n, x) < \epsilon \text{ for all } n \geq n_{\epsilon}$
- Cauchy sequence: $\forall \epsilon > 0 \exists n_{\epsilon} \in \mathbb{N} \text{ s.t. } d(x_n, x_m) < \epsilon \text{ for all } n, m \geq n_{\epsilon}$
- Proved that a convergent sequence is Cauchy
- Discussed complete metric spaces, where all Cauchy sequences converge (like \mathbb{R} with the usual metric, absolute value)
- Proved that a sequence converges to x if and only if all subsequences converge to x

Outline for today

- Continuity
- Equivalent metrics
- Density and separability

Continuity

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces, let $x_0 \in X$, and let $f: X \to Y$. *f* is *continuous* at x_0 if for every sequence $(x_n)_{n \in \mathbb{N}}$ in X that converges to x_0 , we have $\lim_{n \to \infty} f(x_n) = f(x_0)$.

We say that f is continuous if it is continuous at every point in X.

Theorem

Let (X, d_X) and (Y, d_Y) be metric spaces, let $x_0 \in X$, and let $f : X \to Y$. The following are equivalent:

- (i) f is continuous at x0) (Previous definition)
- (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0))) < \epsilon$ for all $x \in X$ with $d_X(x, x_0) < \delta$
- (iii) for each $\epsilon > 0$, there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$

If Xn+ Xo, then form) - forxo) (i) f is continuous at x_0 (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \epsilon$ for all $x \in X$ with $d_X(x, x_0) < \delta$ (iii) for each $\epsilon > 0$, there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$ Proof. (i) \Rightarrow (ii) We prove the contrapositive. $2 \in 10$, 3×10 , $3 \times 10 = 10$, 3×10^{-3} set s.t. $d_x(x_s, x_s) < s$ and $d_y(f(x_s), f(x_s)) \ge 1$. Lt 8= tr., We prok the S.I. dx (2m, No) < tr and dy (form), for))=E. then, sure dx (The, To) < to, we have the To. However dy (fran), fran) > E for * n i-plins fran) +> fran) them fore, the contrapositive is proved.

(iii)
$$\Rightarrow$$
 (i) Let $\pi_{1} \rightarrow \pi_{2}$.
Let $\varepsilon > 0$. Then by (10), $^{2}\delta > 0$ set, $\beta_{\delta}(x_{0}) \in f^{4}(\beta_{\varepsilon}(fx_{0})))$.
Since $\pi_{1} \rightarrow x_{0}$, $^{2}\pi_{\varepsilon}$ set, $M \ge M_{\varepsilon} \Longrightarrow d_{\varepsilon}(\pi_{1}, x_{0}) < \delta$.
Note that $d_{\varepsilon}(\pi_{1}, x_{0}) < \delta \iff \pi_{\varepsilon} \in \beta_{\delta}(x_{0}) \subset f^{-1}(\beta_{\varepsilon}(fx_{0})))$
The (est expression means $f(r_{0}r_{0}) \in \beta_{\varepsilon}(fron))$
 $= d_{\varepsilon}(fron) \in \beta_{\varepsilon}(fron)) < \varepsilon$.
Subsected Sciences Thus, we have shown, $^{2}\pi_{\varepsilon}$ set, $m \ge m_{\varepsilon} \Rightarrow d_{\varepsilon}(fron), f(\pi_{\varepsilon}) < \varepsilon$.
July 15, 2024 7/23

Corollary

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$. The following are equivalent:

(i) f is continuous on X(ii) if $U \subseteq Y$ is open, then $f^{-1}(U)$ is open \leftarrow thrs is used as definition of (iii) if $F \subseteq Y$ is closed, then $f^{-1}(F)$ is closed contrarily for general

topological spaces.

We need the following results about sets and functions: Let X and Y be sets and $f: X \rightarrow Y$. Let $A, B \subseteq Y$. Then

$$A \subseteq B \implies f^{-1}(A) \subseteq f^{-1}(B)$$

$$P^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$$
(second constraints)

÷

Proof. Let
$$(X, d_X)$$
 and (Y, d_Y) be metric spaces and let $f: X \to Y$.
(i) \Rightarrow (ii):
Let $V \subset Y$ he open. We want to show $f'(V)$ is open.
Let $X \in f'(V)$. Then $f(X) \in V$ which is grave.
There exists $E > 0$ set. $B_E(fex) \subset V$
Sin f is contrinuous at X , $\overline{P}_{g} > 0$ s.f. $B_S(X) \subset f'(B_E(fer))$
Since $B_E(f(X)) \subset V$, we have $f'(B_E(f(X))) \subset f'(V)$.
Surficiently of toronto Thus, we have shown $B_S(K) \subset f'(V)$. (Lus $f'(V)$ is open-
July 15, 2024 $9/23$

(ii) \Rightarrow (i) We will prove the equivalent definition (ii) of antinuity at \mathcal{T}_{o} , Let xo ex al E>O. Sime $B_{\mathcal{E}}(f(\mathbf{r}))$ is open, $f'(B_{\mathcal{E}}(f(\mathbf{r})))$ is open (we used (b)) This is exactly the equivalent definition (11).

(iii)
$$\Rightarrow$$
 (iii)
Lf F C Y be closed.
Then Y LF is open.
By ch f⁻¹(X LF) is open.
However, f⁻¹(X LF) = X \ f⁻¹(LF).
Therefore, f⁻¹(CF) is classed
(iii) \Rightarrow (ii)

Exercite.

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$. does not depend on $\mathcal{T}_1, \mathcal{T}_2$.

- *f* is *uniformly continuous* if for all $\epsilon > 0$, there exists $\delta > 0$ such that for every $x_1, x_2 \in X$ with $d_X(x_1, x_2) < \delta$, we have $d_Y(f(x_1), f(x_2)) < \epsilon$
- f is Lipschitz continuous if there exists a K > 0 such that for every $x_1, x_2 \in X$ we have $d_Y(f(x_1), f(x_2))) \leq K d_X(x_1, x_2)$

Proposition

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$.

f is Lipschitz continuous \Rightarrow f is uniformly continuous \Rightarrow f is continuous

Proof is one of your exercises.

example.)

$$f(x) = \frac{1}{x}, x > 0$$

$$f(x) = \frac{1}{x}, x > 0$$

$$f(x) = x \text{ out founds continuous}.$$

$$(t \in S>0, ...)$$

$$\left[\frac{1}{x} - \frac{1}{x_0}\right] = \left(\frac{1}{x_{x_0}}\right) \left[\frac{x}{x} - \frac{x_0}{x_0}\right] < \varepsilon.$$

$$\int \infty \text{ as } x_0 + 0$$

$$(x - x_0) < \left(\frac{\varepsilon}{x_0} + \frac{x_0}{x_0}\right) = \frac{1}{x_0}$$

Contraction Mapping Theorem

Definition

Let (X, d) be a metric space and let $f: X \to X$. We say that $x^* \in X$ is a *fixed point* of f if $f(x^*) = x^*$.

Definition

Let (X, d) be a metric space and let $f: X \to X$. f is a contraction if there exists a constant $k \in [0, 1)$ such that for all $x, y \in X$, $d(f(x), f(y)) \le kd(x, y)$.

Observe that a function is a contraction if and only if it is Lipschitz continuous with constant K < 1.

Theorem (Contraction Mapping Theorem)

Suppose that $f: X \to X$ is a contraction and the metric space X is complete. Then f has a unique fixed point x^* .

Example

Let $f: \left[-\frac{1}{3}, \frac{1}{3}\right] \to \left[-\frac{1}{3}, \frac{1}{3}\right]$ be defined by the mapping $x \mapsto x^2$. Assume we use the standard Euclidean metric, d(x, y) = |x - y|. *f* has a unique fixed point because

(i)
$$\left[\frac{1}{3},\frac{1}{3}\right]$$
 is complete
(ii) $\left[\frac{x^2-y^2}{2}\right] = \left[\frac{x+3}{x+3}\right]\left[\frac{x-3}{2}\right] = \frac{2}{3}$ (N-3)
 $= \frac{2}{3}$ Contraction!
Thus f is a contraction.
Therefore, the construct of a fixed point is guaranteed.

Equivalent metrics

Definition (Equivalent metrics)

Two metrics d_1 and d_2 on a set X are *equivalent* if the identity maps from (X, d_1) to (X, d_2) and from (X, d_2) to (X, d_1) are continuous.

Proposition

Two metrics d_1 , d_2 on a set X are equivalent if and only if they have the same open sets or the same closed sets.

Definition

Two metrics d_1 and d_2 on a set X are strongly equivalent if for every $x, y \in X$, there exists constants $\alpha > 0$ and $\beta > 0$ such $\alpha d_1(x, y) \le d_2(x, y) \le \beta d_1(x, y)$. $d_1 \land d_2 \land d_2 \land d_3 \land d_4 \land d$

If two metrics are strongly equivalent then they are equivalent. The proof of this is one of the exercises.

Example

We show that the Euclidean distance (induced by 2-norm) and the metric induced by the ∞ -norm are equivalent on \mathbb{R}^n .

$$\begin{aligned} \| x - 3 \|_{2} &= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x_{c} - 7c)^{2} \\ \| x - 3 \|_{2} &= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x_{c} - 7c)^{2} \\ \frac{\pi}{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x_{c} - 7c)^{2} \\ &= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x_{c} - 7c)^{2} \\ \frac{\pi}{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (x_{c} - 7c)^{2} \\ \frac{\pi}{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} |x_{c} - 7c|^{2} \\ \frac{\pi}{2} \int_{\frac{\pi}{2}}$$

Can you think of an example that we've seen of a metric that isn't equivalent to the Euclidean metric?

Density

Definition

Let (X, d) be a metric space. A subset $A \subseteq X$ is called *dense* if $\overline{A} = X$.

Definition of
$$\overline{A} = \{ x \in X : \forall \Sigma^{0}, B_{\Sigma}(x) \land A \neq \not \in \}$$

From this we can say

Why are dense sets important?

Examples 1. $(\mathbb{R}, |\cdot|)$ \square is dense in \square .

2. Let X be a set and define $d: X \times X \to \mathbb{R}$ by

$$d(x,y) = \begin{cases} 0, & x = y, \\ 1, & x \neq y. \end{cases}$$
The only dense set on X is X itself
(-evencise)

Definition

A metric space (X, d) is separable if it contains a countable dense subset.

Example: IP is suparable sme Q is countable and dense.

Example

Define $\ell_{\infty} = \{(x_n)_{n \in \mathbb{N}} : x_n \in \mathbb{R}, \sup_{n \in \mathbb{N}} |x_n| < \infty\}$, the space of bounded real valued sequences. Endow ℓ_{∞} with a metric induced by the supremum norm, namely $d((x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}) = \sup_{n \in \mathbb{N}} |x_n - y_n|$. Then ℓ_{∞} is **not separable** with respect to the topology induced by this metric.

Note: this proof relies on content from the cardinality section. Specifically, Cantor's theorem gives us that $|A| < |\mathcal{P}(A)|$ for any set A.

Proof. Suppose. $S \subset loo rs a countrible dense subst.$ Let $S = \{ (x_{m}^{k})_{n \in \mathbb{N}} : k \in \mathbb{N} \}$ $b_{z=1} : (x_{n}^{i})_{n \in \mathbb{N}} : k \in \mathbb{N} \}$ Statistical Sciences UNIVERSITY OF TORONTO $b_{z=3} : x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, \dots \dots \dots$ July 15, 2024

21/23

Proof continued.
Proof continued.
Define a new sequence
$$(\Im_n)_{n \in \mathbb{N}}$$
 by
 $\Im_n = \begin{cases} \bigcirc & rf(\Im_n^n) > l \\ & \Im_n^n t(& rf(\chi_n^n) \leq l. \\ & & \Im_n^n t(& rf(\chi_n^n) \leq l. \\ & & & \Im_n^n t(& rf(\chi_n^n) \leq l. \\ & & & \Im_n^n t(& rf(\chi_n^n) \leq l. \\ & & & & \Im_n^n t(\chi_n^n) \leq l. \end{cases}$

$$d\left(\left(\Im_{h}\right)_{h\in K},\left(\Im_{h}\right)_{h\in K}\right) \geq \left(\int_{e_{h}}^{e_{h}} \bigvee_{h}^{h}\right)$$

$$B_{T} f_{h}b_{T} = 0 < 8 < 1, f_{h}n = B_{E}\left((\Im_{h}\right)_{h\in K}\right) \land S = F.$$

$$This contradicts to the assumption that S is dense.
(Proof OP)
For any ICN, defense. a second $e^{I_{-}}\left(\mathbb{P}^{I}\right)_{h\in K}$

$$f_{n} = \begin{cases} 1 & \text{if } n \in I \\ 0 & \text{otheorye.} \end{cases}$$
Note that if I = 1 = J, ? m s.t. $|\mathbb{P}_{h}^{I} - \mathbb{P}_{h}^{J}\rangle = 1$

$$There have, d\left(\mathbb{P}^{I}, \mathbb{P}^{J}\right) = 1 \text{ if } I = J.$$

$$There have, d\left(\mathbb{P}^{I}, \mathbb{P}^{J}\right) = 1 \text{ if } I = J.$$

$$So = aU = B_{E}\left(\mathbb{P}^{I}\right) \text{ are } disjont.$$

$$Lat S C Loo be a dense subset.$$

$$B_{L}\left(\mathbb{P}^{I}\right) \text{ and } disjont, there intersecting are disjont.$$

$$B_{h}f = \operatorname{Subsec} = B_{E}\left(\mathbb{P}^{I}\right) \text{ and } disjont, there intersecting are disjont.$$

$$B_{h}f = \operatorname{Subsec} = B_{E}\left(\mathbb{P}^{I}\right) \text{ and } disjont, there intersecting are disjont.$$

$$Thus = \left|S\right| \geq \left|\{I : I \in \mathbb{N}\}\right|$$

$$= \left|P(N)\right| > |N|.$$

$$Thus = \left|S\right| \geq |\{I : I \in \mathbb{N}\}|.$$$$

References

Jiř00ED Lebl (2022). *Basic Analysis I*. Vol. 1. Introduction to Real Analysis. https://www.jirka.org/ra/realanal.pdf

Runde, Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

References

Jiř00ED Lebl (2022). *Basic Analysis I*. Vol. 1. Introduction to Real Analysis. https://www.jirka.org/ra/realanal.pdf

Runde, Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

