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Last time

Looked at open and closed sets.
Discussed sequences, which includes Cauchy sequences and subsequences:

• Convergent sequence: xn → x ⇔ ∀ϵ > 0 ∃ nϵ ∈ N s.t. d(xn, x) < ϵ for all n ≥ nϵ
• Cauchy sequence: ∀ϵ > 0 ∃ nϵ ∈ N s.t. d(xn, xm) < ϵ for all n,m ≥ nϵ
• Proved that a convergent sequence is Cauchy
• Discussed complete metric spaces, where all Cauchy sequences converge (like R

with the usual metric, absolute value)
• Proved that a sequence converges to x if and only if all subsequences converge to x
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Outline for today

• Continuity

• Equivalent metrics

• Density and separability
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Continuity

Definition
Let (X, dX) and (Y, dY) be metric spaces, let x0 ∈ X, and let f : X → Y. f is continuous
at x0 if for every sequence (xn)n∈N in X that converges to x0, we have
limn→∞ f(xn) = f(x0).

We say that f is continuous if it is continuous at every point in X.

July 15, 2024 4 / 23

-

-



Theorem
Let (X, dX) and (Y, dY) be metric spaces, let x0 ∈ X, and let f : X → Y. The following
are equivalent:
(i) f is continuous at x0
(ii) for all ϵ > 0, there exists δ > 0 such that dY(f(x), f(x0))) < ϵ for all x ∈ X with

dX(x, x0) < δ

(iii) for each ϵ > 0, there is δ > 0 such that Bδ(x0) ⊆ f−1(Bϵ(f(x0)))
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(i) f is continuous at x0
(ii) for all ϵ > 0, there exists δ > 0 such that dY(f(x), f(x0))) < ϵ for all x ∈ X with
dX(x, x0) < δ
(iii) for each ϵ > 0, there is δ > 0 such that Bδ(x0) ⊆ f−1(Bϵ(f(x0)))

Proof. (i) ⇒ (ii)
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(ii) ⇒ (iii)

(iii) ⇒ (i)
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Corollary
Let (X, dX) and (Y, dY) be metric spaces and let f : X → Y. The following are
equivalent:
(i) f is continuous
(ii) if U ⊆ Y is open, then f−1(U) is open
(iii) if F ⊆ Y is closed, then f−1(F) is closed
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We need the following results about sets and functions:
Let X and Y be sets and f : X → Y. Let A,B ⊆ Y. Then

1 A ⊆ B =⇒ f−1(A) ⊆ f−1(B)
2 f−1(Y \ A) = X \ f−1(A)

Proof. Let (X, dX) and (Y, dY) be metric spaces and let f : X → Y.
(i) ⇒ (ii):
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(ii) ⇒ (i)
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(ii) ⇒ (iii)

(iii) ⇒ (ii)
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Definition
Let (X, dX) and (Y, dY) be metric spaces and let f : X → Y.

• f is uniformly continuous if for all ϵ > 0, there exists δ > 0 such that for every
x1, x2 ∈ X with dX(x1, x2) < δ, we have dY(f(x1), f(x2))) < ϵ

• f is Lipschitz continuous if there exists a K > 0 such that for every x1, x2 ∈ X we
have dY(f(x1), f(x2))) ≤ KdX(x1, x2)

Proposition
Let (X, dX) and (Y, dY) be metric spaces and let f : X → Y.

f is Lipschitz continuous ⇒ f is uniformly continuous ⇒ f is continuous

Proof is one of your exercises.
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Contraction Mapping Theorem
Definition
Let (X, d) be a metric space and let f : X → X. We say that x∗ ∈ X is a fixed point of f
if f(x∗) = x∗.

Definition
Let (X, d) be a metric space and let f : X → X. f is a contraction if there exists a
constant k ∈ [0, 1) such that for all x, y ∈ X, d(f(x), f(y))) ≤ kd(x, y).

Observe that a function is a contraction if and only if it is Lipschitz continuous with
constant K < 1.
Theorem (Contraction Mapping Theorem)
Suppose that f : X → X is a contraction and the metric space X is complete. Then f
has a unique fixed point x∗.
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Example
Let f :

[
−1

3 ,
1
3
]
→

[
−1

3 ,
1
3
]

be defined by the mapping x +→ x2. Assume we use the
standard Euclidean metric, d(x, y) = |x − y|. f has a unique fixed point because
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Equivalent metrics

Definition (Equivalent metrics)
Two metrics d1 and d2 on a set X are equivalent if the identity maps from (X, d1) to
(X, d2) and from (X, d2) to (X, d1) are continuous.

Proposition
Two metrics d1, d2 on a set X are equivalent if and only if they have the same open
sets or the same closed sets.
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Definition
Two metrics d1 and d2 on a set X are strongly equivalent if for every x, y ∈ X, there
exists constants α > 0 and β > 0 such

αd1(x, y) ≤ d2(x, y) ≤ βd1(x, y).

If two metrics are strongly equivalent then they are equivalent. The proof of this is one
of the exercises.
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Example
We show that the Euclidean distance (induced by 2-norm) and the metric induced by
the ∞-norm are equivalent on Rn.

Can you think of an example that we’ve seen of a metric that isn’t equivalent to the
Euclidean metric?
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Density

Definition
Let (X, d) be a metric space. A subset A ⊆ X is called dense if A = X.

Why are dense sets important?
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Examples
1. (R, | · |)

2. Let X be a set and define d : X × X → R by

d(x, y) =
{

0, x = y,
1, x ̸= y.
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& is dense in I .

The only dense set in X is X itself
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Definition
A metric space (X, d) is separable if it contains a countable dense subset.

Example:
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Example
Define ℓ∞ = {(xn)n∈N : xn ∈ R, supn∈N |xn| < ∞}, the space of bounded real valued
sequences. Endow ℓ∞ with a metric induced by the supremum norm, namely
d((xn)n∈N, (yn)n∈N) = supn∈N |xn − yn|. Then ℓ∞ is not separable with respect to the
topology induced by this metric.

Note: this proof relies on content from the cardinality section. Specifically, Cantor’s
theorem gives us that |A| < |P(A)| for any set A.
Proof.
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Proof continued.
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