Module 6: Metric Spaces IV Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 17, 2024

Outline

- *•* Compactness
- Extra properties of $\mathbb R$
	- *•* Right- and left-continuity
	- *•* Lim sup and lim inf

Last time

Definition

Let (X, d) be a metric space. A subset $A \subseteq X$ is called *dense* if $\overline{A} = X$.

Definition

A metric space (*X, d*) is *separable* if it contains a countable dense subset.

Example

 $\mathbb R$ is separable because $\mathbb Q$ is dense in $\mathbb R$

Example

Define $\ell_{\infty} = \{(x_n)_{n \in \mathbb{N}} : x_n \in \mathbb{R}, \sup_{n \in \mathbb{N}} |x_n| < \infty\}$, the space of bounded real valued sequences. Endow *ℓ[∞]* with a metric induced by the supremum norm, namely $d((x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}})$ = sup_{pend} $|x_n - y_n|$. Then ℓ_{∞} is **not separable** with respect to the topology induced by this metric.

Note: this proof relies on content from the cardinality section. Specifically, Cantor's theorem gives us that $|A| < |P(A)|$ for any set *A*.

Proof continued.

Compactness

Definition

Let (X, d) be a metric space and $K \subseteq X$.

A collection *{Ui}i∈^I* of open sets is called *open cover* of *K* if *K ⊆ ∪i∈IUⁱ* .

The set *K* is called *compact* if for all open covers $\{U_i\}_{i\in I}$ there exists a finite subcover, m eaning there exists an $n \in \mathbb{N}$ and $\{U_1,\ldots,U_n\} \subseteq \{U_i\}_{i \in I}$ such that $K \subseteq \cup_{i=1}^n U_i.$

Example

Let $S \subseteq X$ where (X, d) is a metric space. If *S* is finite, then it is compact.

Example

(0*,* 1) is not compact.

Proposition

Let (X, d) be a metric space and take a non-empty subset $K \subseteq X$. The following holds:

- **1** If *X* is compact and *K* is closed, then *K* is compact (i.e. closed subsets of compact sets are compact).
- **2** If *K* is compact, then *K* is closed.

Proof. (1) If *X* is compact and $K \subseteq X$ is closed, then *K* is compact

(2) $K ⊆ X$ compact $\Rightarrow K$ is closed.

Arbitrary compact metric spaces have some nice properties in general as the next proposition shows.

Proposition

A compact metric space (*X, d*) is complete and separable.

Also, just as we had a sequential characterization of the closure of a set in metric spaces, we similarly have a sequential characterization of compactness.

Theorem

Let (*X, d*) *be a metric space. Then K ⊆ X is compact with respect to the metric induced by d if and only if every sequence in K admits a subsequence converging to some point in K.*

Compactness on R *n*

Theorem (Heine-Borel Theorem)

Let K ⊆ R *n . Then K is compact with respect to the topology induced by the Euclidean distance if and only if it is closed and bounded.*

A corollary of the last two theorems is the Bolzano-Weierstrass theorem.

Corollary (Bolzano-Weierstrass)

Any bounded sequence in R *ⁿ has a convergent subsequence.*

Proposition

Let (X, d_X) and (Y, d_Y) be metric spaces. Suppose $K \subseteq X$ is compact and let $f: K \to Y$ be continuous. Then $f(K)$ is compact.

Note: this is a generalization of the Extreme Value Theorem to metric spaces.

Recall from the set theory section:
\nIf
$$
f: X \to Y
$$
:
\n $\bullet A \subseteq B \subseteq Y \Rightarrow f^{-1}(A) \subseteq f^{-1}(B)$ and $A \subseteq B \subseteq X \Rightarrow f(A) \subseteq f(B)$
\n $\bullet f^{-1}(\cup_{i \in I} A_i) = \cup_{i \in I} f^{-1}(A_i)$, where $A_i \subseteq Y \forall i \in I$
\n $\bullet f(\cup_{i \in I} A_i) = \cup_{i \in I} f(A_i)$, where $A_i \subseteq X \forall i \in I$
\n $\bullet A \subseteq X \Rightarrow A \subseteq f^{-1}(f(A))$
\n $\bullet B \subseteq Y \Rightarrow f(f^{-1}(B)) \subseteq B$

Extra properties of R

Right and left continuous

Recall: $f: \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$ such that $|x_0 - y| < \delta$ implies $|f(x_0) - f(y)| < \epsilon$.

Definition

Let $f: \mathbb{R} \to \mathbb{R}$.

- *• f* is *left continuous* at *x*⁰ *∈* R if for all *ϵ >* 0 there exists a *δ >* 0, such $|f(x_0) - f(x)| < \epsilon$ whenever $x_0 - \delta < x < x_0$.
- *• f* is *right continuous* at *x*⁰ *∈* R if for all *ϵ >* 0 there exists a *δ >* 0, such $|f(x_0) - f(x)| < \epsilon$ whenever $x_0 < x < x_0 + \delta$.

We say that *f* is left continuous if it is left continuous at all points in the domain, and similar for right continuous.

Proposition

A function $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if it is left and right continuous.

Bounded sequences and monotone convergence

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in R. We call $(x_n)_{n\in\mathbb{N}}$ *bounded* if there exists an $M>0$ such that $|x_n| < M$ for all $n \in \mathbb{N}$.

Theorem (Monotone convergence theorem)

(i) *Suppose* $(x_n)_{n \in \mathbb{N}}$ *is an increasing sequence, i.e.* $x_n \le x_{n+1}$ *for all n* $\in \mathbb{N}$ *, and that it is bounded (above). Then the sequence converges. Furthermore,* $\lim_{n\to\infty} x_n = \sup_{n\in\mathbb{N}} x_n$, where $\sup_{n\in\mathbb{N}} x_n := \sup\{x_n : n \in\mathbb{N}\}.$

(ii) *Suppose* $(x_n)_{n \in \mathbb{N}}$ *is a decreasing sequence, i.e.* $x_n \ge x_{n+1}$ *for all* $n \in \mathbb{N}$ *, which is bounded (below). Then the sequence converges and* $\lim_{n\to\infty}x_n=\inf_{n\in\mathbb{N}}x_n:=\inf\{x_n:\ n\in\mathbb{N}\}.$

Y OF TORONTO

Convention: sup $A = \infty$ if $A \subseteq \mathbb{R}$ is not bounded above and inf $A = -\infty$ if A is not bounded below.

Lemma

If $A \subseteq B \subseteq \mathbb{R}$ *is non-empty, then* inf $A \leq \sup A \leq \sup A \leq \sup B$, and inf $A \geq \inf B$.

The proof of this follows from the definition of greatest lower and least upper bound.

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in R. We define the *limit superior* of $(x_n)_{n\in\mathbb{N}}$ as

lim sup *n→∞ xⁿ* := lim *n→∞* sup *k≥n xk.*

Similarly we define the *limit inferior* of $(x_n)_{n\in\mathbb{N}}$ as

$$
\liminf_{n\to\infty}x_n:=\lim_{n\to\infty}\inf_{k\geq n}x_k.
$$

If the sequence $(x_n)_{n \in \mathbb{N}}$ is not bounded above, then $\limsup_{n \to \infty} x_n = \infty$. Similarly, if the sequence $(x_n)_{n \in \mathbb{N}}$ is not bounded below, then $\liminf_{n \to \infty} x_n = -\infty$.

Proposition

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R} .

- The sequence of suprema, $s_n = \sup_{k \geq n} x_k$, is decreasing and the sequence of infima, $i_n = \inf_{k \geq n} x_k$, is increasing.
- *•* The limit superior and the limit inferior of a bounded sequence always exist and are finite.

Theorem

Let $(x_n)_{n \in \mathbb{N}}$ *be a sequence in* \mathbb{R} *. Then the sequence converges to* $x \in \mathbb{R}$ *if and only if* $\limsup_{n\to\infty} x_n = x = \liminf_{n\to\infty} x_n$.

Proof in notes.

We can extend this easily to a sequence of functions $f_n: X \to \mathbb{R}$ as follows:

Define $f = \limsup_{n \to \infty} f_n$ to be the function defined pointwise by $f(x) = \limsup_{n \to \infty} (f_n(x))$ and similar for the limit inferior.

There also exists a set theoretic version in terms of unions and intersections which you will encounter in probability.

References

Runde, Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

