Module 6: Metric Spaces IV Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 17, 2024

Outline

- Compactness
- Extra properties of ${\mathbb R}$
 - Right- and left-continuity
 - Lim sup and lim inf

Last time

Definition

Let (X, d) be a metric space. A subset $A \subseteq X$ is called *dense* if $\overline{A} = X$.

Definition

A metric space (X, d) is separable if it contains a countable dense subset.

Example

 \mathbb{R} is separable because \mathbb{Q} is dense in \mathbb{R} and cantcher.

Example

Define $\ell_{\infty} = \{(x_n)_{n \in \mathbb{N}} : x_n \in \mathbb{R}, \sup_{n \in \mathbb{N}} |x_n| < \infty\}$, the space of bounded real valued sequences. Endow ℓ_{∞} with a metric induced by the supremum norm, namely $d((x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}) = \sup_{n \in \mathbb{N}} |x_n - y_n|$. Then ℓ_{∞} is **not separable** with respect to the topology induced by this metric.

Note: this proof relies on content from the cardinality section. Specifically, Cantor's theorem gives us that $|A| < |\mathcal{P}(A)|$ for any set A.

Proof.

Proof continued.

Compactness

Definition

Let (X, d) be a metric space and $K \subseteq X$. A collection $\{U_i\}_{i \in I}$ of open sets is called *open cover* of K if $K \subseteq \bigcup_{i \in I} U_i$. The set K is called *compact* if for all open covers $\{U_i\}_{i \in I}$ there exists a finite subcover, meaning there exists an $n \in \mathbb{N}$ and $\{U_1, \ldots, U_n\} \subseteq \{U_i\}_{i \in I}$ such that $K \subseteq \bigcup_{i=1}^n U_i$.

Example

Let $S \subseteq X$ where (X, d) is a metric space. If S is finite, then it is compact.

Let (Ux] xEA. be an open comp of S= {xi, i=1, -; m} Proof. SU, S= Ü {VO3 C. U VX. For each i, 2 LEA. S.I. ROE UNO The 5= 2 {x.3 C U Vi fuite sub cover of 3

Example

(0,1) is not compact.

Proof. Let
$$\overline{U}_{n} = (\frac{1}{n}, 1-\frac{1}{n})$$
 $\overline{U}_{i} \subset \overline{U}_{i} \subset \overline{U}_{i} \subset \overline{U}_{i} \subset \overline{U}_{i} \subset \overline{U}_{i}$
Then $(0,1) = \bigcup_{n \ge 1} \overline{U}_{n}$ Thes $\{\overline{U}_{i}\}_{a \in \mathbb{N}}$ is an open common of $(0,1)$.
However, for any finite subset $\overline{I} \subset \mathbb{N}$, $(\frac{1}{n!} M_{\overline{I}})$ here
the maximum integer in \overline{I} , then
 $\bigcup_{i \in \overline{I}} \overline{U}_{i} = \overline{U}_{i} = (\frac{1}{M_{2}}, 1-\frac{1}{M_{2}}) \bigoplus_{i \in \overline{I}} (0,1)$
i $\overline{I} \subset \overline{I}$ is the subcover from $\{\overline{U}_{n}\}_{m \in \mathbb{N}}$.
July 17, 2024 8/1

Proposition

Let (X, d) be a metric space and take a non-empty subset $K \subseteq X$. The following holds:

- If X is compact and K is closed, then K is compact (i.e. closed subsets of compact sets are compact).
- 2 If K is compact, then K is closed. = any open at which is not observed

is not compact.

Proof. (1) If X is compact and $K \subseteq X$ is closed, then K is compact

Lt
$$k \in UU_{X}$$
, when U_{X} is an open cover of X.
Addog $\frac{k^{c}}{opn}$ to $\{V_{X}\}_{AGA}$, it becomes an open cover of X.
She X is compact, there exists finite subcour $\{k^{c}\} \cup \{U_{Ac}\}_{para, a}$
She $k^{c} \cap k = 4$, it meas $\{V_{Ac}\}_{c=1, -, m}$ covers k .
Therefore, k is compact.

(2)
$$K \subseteq X \text{ compact} \Rightarrow K \text{ is closed.}$$

Suppose $T_{m} \in \mathbb{R} \rightarrow \infty \notin \mathbb{R}$.
Sime $\pi \notin \mathbb{R}$ and $\bigcap \overline{B_{\mathcal{E}}(\pi)} = \{\pi\}$. $K \cap \left(\bigcap_{\mathcal{E} \neq r} \overline{B_{\mathcal{E}}(\pi)}\right) = \phi$.
Thus $K \subset \left(\bigcap_{\mathcal{E} \neq c} \overline{B_{\mathcal{E}}(\pi)}\right)^{C} = \bigcup_{\mathcal{E} \geq 0} \frac{\overline{B_{\mathcal{E}}(\pi)}}{apm \text{ set}}$
By competences of K_{j} we can probe finite \mathcal{E}^{j}_{S}
 $\mathcal{E}_{j} > \mathcal{E}_{2} > \cdots > \mathcal{E}_{j} > 0 \quad S.f.$
 $K \subset \bigcup_{\mathcal{E} \neq r} \overline{B_{\mathcal{E}_{i}}(\pi)}^{C} = \overline{B_{\mathcal{E}_{m}}(\pi)}^{C}$.

This Ic A BEnGED = \$. This contradiots with the assuption Non Etc -) X.

Arbitrary compact metric spaces have some nice properties in general as the next proposition shows.

Proposition

A compact metric space (X, d) is complete and separable.

Also, just as we had a sequential characterization of the closure of a set in metric spaces, we similarly have a sequential characterization of compactness.

Theorem

Let (X, d) be a metric space. Then $K \subseteq X$ is compact with respect to the metric induced by d if and only if every sequence in K admits a subsequence converging to some point in K.

Compactness on \mathbb{R}^n

Theorem (Heine-Borel Theorem)

Let $K \subseteq \mathbb{R}^n$. Then K is compact with respect to the topology induced by the Euclidean distance if and only if it is closed and bounded.

A corollary of the last two theorems is the Bolzano-Weierstrass theorem.

Corollary (Bolzano-Weierstrass)

Any bounded sequence in \mathbb{R}^n has a convergent subsequence.

14/1

Proposition

Let (X, d_X) and (Y, d_Y) be metric spaces. Suppose $K \subseteq X$ is compact and let $f: K \to Y$ be continuous. Then f(K) is compact.

Note: this is a generalization of the Extreme Value Theorem to metric spaces.

Recall from the set theory section:
If
$$f: X \to Y$$
:
1 $A \subseteq B \subseteq Y \Rightarrow f^{-1}(A) \subseteq f^{-1}(B)$ and $A \subseteq B \subseteq X \Rightarrow f(A) \subseteq f(B)$
2 $f^{-1}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f^{-1}(A_i)$, where $A_i \subseteq Y \forall i \in I$
3 $f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i)$, where $A_i \subseteq X \forall i \in I$
4 $A \subseteq X \Rightarrow A \subseteq f^{-1}(f(A))$
5 $B \subseteq Y \Rightarrow f(f^{-1}(B)) \subseteq B$

Proof. Let
$$f(k) \subset \bigcup \bigcup n$$
 be open over.
Then $k \subset \bigcup f^{-1}(\bigcup n)$.
NGA for some firs cont. and $\bigcup n$ is open.
By compactness of k , then exists s-boom $\{f'(\bigcup n)\}_{i=1,\dots,n}$.
Thus, $k \subset \bigcup f^{-1}(\bigcup n)$.
Therefore, $f(k) \subset \bigcup f(f^{-1}(\bigcup n))$.
C $\bigcup \bigcup n$.
Duly 17, 2024 16/1

Extra properties of \mathbb{R}

Right and left continuous

Recall: $f: \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$ such that $|x_0 - y| < \delta$ implies $|f(x_0) - f(y)| < \epsilon$.

Definition

Let $f: \mathbb{R} \to \mathbb{R}$.

- f is left continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$, such $|f(x_0) f(x)| < \epsilon$ whenever $x_0 \delta < x < x_0$. (with of γ_{ϵ}
- f is right continuous at $x_0 \in \mathbb{R}$ if for all $\epsilon > 0$ there exists a $\delta > 0$, such $|f(x_0) f(x)| < \epsilon$ whenever $x_0 < x < x_0 + \delta$.

We say that f is left continuous if it is left continuous at all points in the domain, and similar for right continuous.

Proposition

A function $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if it is left and right continuous.

Proof.

exercise.

Bounded sequences and monotone convergence

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . We call $(x_n)_{n\in\mathbb{N}}$ bounded if there exists an M > 0 such that $|x_n| < M$ for all $n \in \mathbb{N}$.

Theorem (Monotone convergence theorem)

(i) Suppose (x_n)_{n∈ℕ} is an increasing sequence, i.e. x_n ≤ x_{n+1} for all n ∈ ℕ, and that it is bounded (above). Then the sequence converges. Furthermore, lim_{n→∞} x_n = sup_{n∈ℕ} x_n, where sup_{n∈ℕ} x_n := sup{x_n : n ∈ ℕ}.
(ii) Suppose (x_n)_{n∈ℕ} is a decreasing sequence, i.e. x_n ≥ x_{n+1} for all n ∈ ℕ, which is bounded (below). Then the sequence converges and

$$\lim_{n\to\infty} x_n = \inf_{n\in\mathbb{N}} x_n := \inf\{x_n : n\in\mathbb{N}\}.$$

Convention: sup $A = \infty$ if $A \subseteq \mathbb{R}$ is not bounded above and $\inf A = -\infty$ if A is not bounded below.

Lemma

If $A \subseteq B \subseteq \mathbb{R}$ is non-empty, then $\inf A \leq \sup A$, $\sup A \leq \sup B$, and $\inf A \geq \inf B$.

The proof of this follows from the definition of greatest lower and least upper bound.

Definition

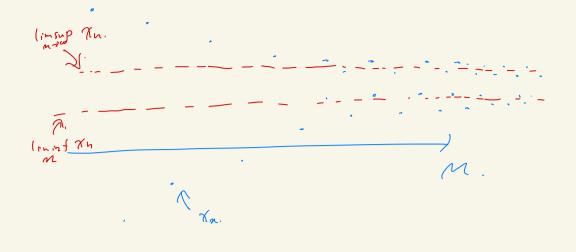
Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . We define the *limit superior* of $(x_n)_{n\in\mathbb{N}}$ as

$$\limsup_{n \to \infty} x_n := \lim_{n \to \infty} (\sup_{k \ge n} x_k) = \inf_{n \to \infty} (\sup_{k \ge n} x_k)$$

Similarly we define the *limit inferior* of $(x_n)_{n \in \mathbb{N}}$ as

$$\liminf_{n\to\infty} x_n := \lim_{n\to\infty} \left(\inf_{k\geq n} x_k \right) = \sum_{n=1}^{\infty} \left(\sum_{k\geq n} x_k \right)$$

If the sequence $(x_n)_{n\in\mathbb{N}}$ is not bounded above, then $\limsup_{n\to\infty} x_n = \infty$. Similarly, if the sequence $(x_n)_{n\in\mathbb{N}}$ is not bounded below, then $\liminf_{n\to\infty} x_n = -\infty$.



Proposition

Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R} .

- The sequence of suprema, s_n = sup_{k≥n} x_k, is decreasing and the sequence of infima, i_n = inf_{k≥n} x_k, is increasing.
- The limit superior and the limit inferior of a bounded sequence always exist and are finite.

Proof.

exercise.

Theorem

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} . Then the sequence converges to $x \in \mathbb{R}$ if and only if $\limsup_{n\to\infty} x_n = x = \liminf_{n\to\infty} x_n$.

Proof in notes.

We can extend this easily to a sequence of functions $f_n \colon X \to \mathbb{R}$ as follows:

Define $f = \limsup_{n \to \infty} f_n$ to be the function defined pointwise by $f(x) = \limsup_{n \to \infty} (f_n(x))$ and similar for the limit inferior.

There also exists a set theoretic version in terms of unions and intersections which you will encounter in probability.

References

Runde, Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

