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• Compactness
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Last time

Definition
Let (X, d) be a metric space. A subset A ⊆ X is called dense if A = X.

Definition
A metric space (X, d) is separable if it contains a countable dense subset.

Example
R is separable because Q is dense in R
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Example
Define ℓ∞ = {(xn)n∈N : xn ∈ R, supn∈N |xn| < ∞}, the space of bounded real valued
sequences. Endow ℓ∞ with a metric induced by the supremum norm, namely
d((xn)n∈N, (yn)n∈N) = supn∈N |xn − yn|. Then ℓ∞ is not separable with respect to the
topology induced by this metric.

Note: this proof relies on content from the cardinality section. Specifically, Cantor’s
theorem gives us that |A| < |P(A)| for any set A.
Proof.
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Proof continued.
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Compactness

Definition
Let (X, d) be a metric space and K ⊆ X.
A collection {Ui}i∈I of open sets is called open cover of K if K ⊆ ∪i∈IUi.
The set K is called compact if for all open covers {Ui}i∈I there exists a finite subcover,
meaning there exists an n ∈ N and {U1, . . . ,Un} ⊆ {Ui}i∈I such that K ⊆ ∪n

i=1Ui.
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Example
Let S ⊆ X where (X, d) is a metric space. If S is finite, then it is compact.

Proof.
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Example
(0, 1) is not compact.

Proof.
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Proposition
Let (X, d) be a metric space and take a non-empty subset K ⊆ X. The following holds:

1 If X is compact and K is closed, then K is compact (i.e. closed subsets of
compact sets are compact).

2 If K is compact, then K is closed.
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Proof. (1) If X is compact and K ⊆ X is closed, then K is compact
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(2) K ⊆ X compact ⇒ K is closed.
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Arbitrary compact metric spaces have some nice properties in general as the next
proposition shows.

Proposition
A compact metric space (X, d) is complete and separable.

Also, just as we had a sequential characterization of the closure of a set in metric
spaces, we similarly have a sequential characterization of compactness.

Theorem
Let (X, d) be a metric space. Then K ⊆ X is compact with respect to the metric
induced by d if and only if every sequence in K admits a subsequence converging to
some point in K.
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Compactness on Rn

Theorem (Heine-Borel Theorem)
Let K ⊆ Rn. Then K is compact with respect to the topology induced by the Euclidean
distance if and only if it is closed and bounded.

A corollary of the last two theorems is the Bolzano-Weierstrass theorem.

Corollary (Bolzano-Weierstrass)
Any bounded sequence in Rn has a convergent subsequence.
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Proposition
Let (X, dX) and (Y, dY) be metric spaces. Suppose K ⊆ X is compact and let f : K → Y
be continuous. Then f(K) is compact.

Note: this is a generalization of the Extreme Value Theorem to metric spaces.

Recall from the set theory section:
If f : X → Y:

1 A ⊆ B ⊆ Y ⇒ f−1(A) ⊆ f−1(B) and A ⊆ B ⊆ X ⇒ f(A) ⊆ f(B)
2 f−1(∪i∈IAi) = ∪i∈If−1(Ai), where Ai ⊆ Y ∀i ∈ I
3 f(∪i∈IAi) = ∪i∈If(Ai), where Ai ⊆ X ∀i ∈ I
4 A ⊆ X ⇒ A ⊆ f−1(f(A))
5 B ⊆ Y ⇒ f(f−1(B)) ⊆ B
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Proof.
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Extra properties of R
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Right and left continuous

Recall: f : R → R is continuous at x0 ∈ R if for all ϵ > 0 there exists a δ > 0 such that
|x0 − y| < δ implies |f(x0)− f(y)| < ϵ.

Definition
Let f : R → R.

• f is left continuous at x0 ∈ R if for all ϵ > 0 there exists a δ > 0, such
|f(x0)− f(x)| < ϵ whenever x0 − δ < x < x0.

• f is right continuous at x0 ∈ R if for all ϵ > 0 there exists a δ > 0, such
|f(x0)− f(x)| < ϵ whenever x0 < x < x0 + δ.

We say that f is left continuous if it is left continuous at all points in the domain, and
similar for right continuous.
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Proposition
A function f : R → R is continuous if and only if it is left and right continuous.

Proof.
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Bounded sequences and monotone convergence

Definition
Let (xn)n∈N be a sequence in R. We call (xn)n∈N bounded if there exists an M > 0
such that |xn| < M for all n ∈ N.

Theorem (Monotone convergence theorem)
(i) Suppose (xn)n∈N is an increasing sequence, i.e. xn ≤ xn+1 for all n ∈ N, and that

it is bounded (above). Then the sequence converges. Furthermore,
limn→∞ xn = supn∈N xn, where supn∈N xn := sup{xn : n ∈ N}.

(ii) Suppose (xn)n∈N is a decreasing sequence, i.e. xn ≥ xn+1 for all n ∈ N, which is
bounded (below). Then the sequence converges and
limn→∞ xn = infn∈N xn := inf{xn : n ∈ N}.
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Convention: supA = ∞ if A ⊆ R is not bounded above and inf A = −∞ if A is not
bounded below.

Lemma
If A ⊆ B ⊆ R is non-empty, then inf A ≤ supA, supA ≤ supB, and inf A ≥ inf B.

The proof of this follows from the definition of greatest lower and least upper bound.
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Definition
Let (xn)n∈N be a sequence in R. We define the limit superior of (xn)n∈N as

lim sup
n→∞

xn := lim
n→∞

sup
k≥n

xk.

Similarly we define the limit inferior of (xn)n∈N as

lim inf
n→∞

xn := lim
n→∞

inf
k≥n

xk.

If the sequence (xn)n∈N is not bounded above, then lim supn→∞ xn = ∞. Similarly, if
the sequence (xn)n∈N is not bounded below, then lim infn→∞ xn = −∞.
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Proposition
Let (xn)n∈N be a sequence in R.

• The sequence of suprema, sn = supk≥n xk, is decreasing and the sequence of
infima, in = infk≥n xk, is increasing.

• The limit superior and the limit inferior of a bounded sequence always exist and
are finite.

Proof.
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Theorem
Let (xn)n∈N be a sequence in R. Then the sequence converges to x ∈ R if and only if
lim supn→∞ xn = x = lim infn→∞ xn.

Proof in notes.
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We can extend this easily to a sequence of functions fn : X → R as follows:
Define f = lim supn→∞ fn to be the function defined pointwise by
f(x) = lim supn→∞(fn(x)) and similar for the limit inferior.

There also exists a set theoretic version in terms of unions and intersections which you
will encounter in probability.
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