Module 6: Metric Spaces IV

Operational math bootcamp

&

Statistical Sciences
XY UNIVERSITY OF TORONTO

Ichiro Hashimoto

University of Toronto

July 17, 2024

July 17, 2024

1/1



Outline

e Compactness

® Extra properties of R
® Right- and left-continuity

® Lim sup and lim inf
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Last time

Definition

Let (X, d) be a metric space. A subset A C Xis called dense if A= X.

Definition
A metric space (X, d) is separable if it contains a countable dense subset.

R is separable because Q is dense in R oA getehle .
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Define oo = {(Xn)nen : Xn € R, sup,en |Xa| < 00}, the space of bounded real valued
sequences. Endow /, with a metric induced by the supremum norm, namely
d((Xn)nens (Vn)nen) = SUPpen [Xn — ¥n|. Then £ is not separable with respect to the
topology induced by this metric.

Note: this proof relies on content from the cardinality section. Specifically, Cantor's
theorem gives us that |A| < [P(A)| for any set A.

Proof.
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Proof continued.
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Compactness

Definition

Let (X, d) be a metric space and K C X. T cmbe (F =02

A collection {U;}ics of open sets is called open cover of K if K C Ui U;.

The set K is called compact if for all open covers {U;}c; there exists a finite subcover,
meaning there exists an n € N and {Us, ..., Up} C {Ui}ics such that K C U7 , U
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Let S C X where (X, d) is a metric space. If Sis finite, then it is compact.

Proof. LA (’U )\E en
n
{V/ §L C(_Zl {y"-s c. /\%/L ,U_)\.
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2 bt Co, l_] TS comp et (Vf“ be Avseussed /a?lt\/)

(0,1) is not compact.
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Proposition

Let (X, d) be a metric space and take a non-empty subset K C X. The following holds:

@ If X is compact and K is closed, then K is compact (i.e. closed subsets of
——_—
compact sets are compact).

@ If Kis compact, then Kis closed. =) &7 o= et whrel 75 ol olosd

vsonef cw(;md"\
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Proof. (1) If Xis compact and K C Xis closed, then K is compact
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(2) K C X compact = K is closed.
;MPPM( . '?Cu\ Gl/:— /} /7< .& k .
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/(L\k.s [‘C /) Bgm(!ﬁ) = ¢ .
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Arbitrary compact metric spaces have some nice properties in general as the next
proposition shows.

A compact metric space (X, d) is complete and separable. J

Also, just as we had a sequential characterization of the closure of a set in metric
spaces, we similarly have a sequential characterization of compactness.

Let (X, d) be a metric space. Then K C X is compact with respect to the metric
induced by d if and only if every sequence in K admits a subsequence converging to

—

some point in K.
—~__—— —
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Compactness on R”

Theorem (Heine-Borel Theorem)

Let KC R". Then K is compact with respect to the topology induced by the Euclidean
distance if and only if it is closed and bounded.

A corollary of the last two theorems is the Bolzano-Weierstrass theorem.

Corollary (Bolzano-Weierstrass)
Any bounded sequence in R" has a convergent subsequence.
(Dt ) Lt 03 b o Bded sefpe 00t (R EM . fu7m,

i R e B, HB, ks copt
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Proposition

Let (X, dx) and (Y, dy) be metric spaces. Suppose K C Xis compact and let f: K — Y
be continuous. Then f{K) is compact.

Note: this is a generalization of the Extreme Value Theorem to metric spaces.

Recall from the set theory section:
ff: X—=Y:

@ ACBCY= fYA)CFLYB)and ACBC X= flA) C (B)
® 1(Uic/A) = Uic/f 1(A)), where A; C YVic |

© (UiciA)) = Uic/(A;), where A; C XVie |

0 AC X= ACf1(f(A)

@ BCY=ffY(B)CB
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Extra properties of R J
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Right and left continuous

Recall: f: R — R is continuous at xp € R if for all € > 0 there exists a § > 0 such that
Ixo — y| < & implies [f({xo) — Aly)| < e.

Let f: R — R.
® fis left continuous at xg € R if for all € > 0 there exists a § > 0, such
|fixo) — fx)| < € whenever xop — 0 < x< xp. [(AfT of e
® fis right continuous at X EWO there exists a d > 0, such
|fixo) — f(x)| < € whenever W vigkt of 7,
We say that fis left continuous if it is left continuous at all points in the domain, and
similar for right continuous.
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Proposition

A function f: R — R is continuous if and only if it is left and right continuous.

Proof. .
@ ~eru <.
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Bounded sequences and monotone convergence

Definition

Let (xn)nen be a sequence in R. We call (x,)nen bounded if there exists an M > 0
such that |x,| < M for all n € N.

Theorem (Monotone convergence theorem)

(i) Suppose (xn)nen is an increasing sequence, i.e. x, < xp+1 for all n € N, and that
it is bounded (above). Then the sequence converges. Furthermore,
limp—s00 Xn = SUP ey Xn, Where sup,cy Xn 1= sup{x, : n € N}.

(ii) Suppose (xn)nen is a decreasing sequence, i.e. xp, > xnt1 for all n € N, which is
bounded (below). Then the sequence converges and
limp 00 Xn = infpen Xp := inf{x, : n € N}.
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Convention: supA = oo if A C R is not bounded above and inf A= —oc if A is not
bounded below.

If AC B C R js non-empty, then inf A <supA, supA < supB, and inf A > inf B.

The proof of this follows from the definition of greatest lower and least upper bound.
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Definition
Let (xn)nen be a sequence in R. We define the limit superior of (x,)nen as

limsup x,, := Ilm(supxk) = Mt Fap 7@{)

n—
n—o00 k> a~ S 2on

Similarly we define the limit inferior of (xp)nen as

liminf x, 1= I| DC(mfx = 5p T A,
k>n -

n—00 h2~

v

If the sequence (x,)nen is not bounded above, then limsup,_,., x, = co. Similarly, if
the sequence (xp)nen is not bounded below, then liminf,_ o x, = —o0.
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Let (xn)nen be a sequence in R.

® The sequence of suprema, s, = sup,~, Xk, is decreasing and the sequence of
infima, i, = inf,>, Xk, is increasing.
[ = Wi 2o

® The limit superior and the limit inferior of a bounded sequence always exist and
are finite.
Proof.

greruiik -
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Let (xn)nen be a sequence in R. Then the sequence converges to x € R if and only if
limsup,_,oo Xn = x = liminf o0 Xp.

Proof in notes.
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We can extend this easily to a sequence of functions f,: X — R as follows:

Define f= limsup,_,, f, to be the function defined pointwise by
fix) = limsup,_,,(f:(x)) and similar for the limit inferior.

There also exists a set theoretic version in terms of unions and intersections which you
will encounter in probability.
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