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Outline

Last time:

® \/ector spaces and subspaces
® |inear independence and bases

® |inear maps, null space, range

Today:

® |nverses of linear maps
® Matrices as linear maps
® Determinants

® |nner product spaces
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Recall

Suppose uy, ..., u, is a basis for U and v1, ... ,v, is a basis for V. Then there exists a
unique linear map T : U — V such that Tu; =v; for j=1,...,n.

Definition (Injective and surjective)

Let T: U— V. Tis injective if Tu = Tv implies u = v, if and only if null T={0}. T
is surjective if Yv € V, Ju € U such that v= Tu, i.e. if range T = V.

.

Theorem (Rank Nullity Theorem)

Let T: U— V be a linear transformation, where U and V are finite-dimensional vector
spaces. Then

rank T+ nullity T = dim U.
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Definition (Product of linear maps)
Let Se L(U, V) and T € L(V, W). We define the product ST € L(U, W) for u € U as

$T(u) = S(T(u).

Definition

A linear map T : U — Vis invertible if there exists a linear map S: V — U such that
ST is the identity map on U and TS is the identity map on V. Such a map S is called
_— —————~——— — T —

the inverse of T.

If T is invertible, we denote the inverse by T—!. This is justified by the fact that the
inverse is unique, as the next proposition shows.
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Proposition

Any invertible linear map has a unique inverse.

Proof. (€ T U = V 5 sl
[t 5 oA S/ be ! avirses, 5 T
§1 =51 My , T =15= Wy

~ r
Cor aq WV, we vill sl Sw= 8

Sae - 47 ($w) g ST Tlg5

= s(tsw)

S (T15Tr) e TR
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A linear map is invertible if and only if it is injective and surjective.

See proof in the book.

Definition

An invertible linear map is called an isomorphism. If there exists an isomorphism from
one vector space to another, we say that the vector spaces are isomorphic.
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Gos

Two finite-dimensional vector spaces over I are isomorphic if and only if they have the
same dimension.

Proof. (=) Sppe U =l V' e Soworphe .
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Linear maps and matrices

Let A € M« be a fixed matrix. Then, we can define a linear map T4: F" — F™ via
Ta(v) = Av, where we recall matrix vector multiplication (Av); = > ,_; Ayvk for
i=1,...,m.

Next we will see that we can use matrices to represent linear maps between finite
dimensional vector spaces.
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Definition

Let T € L(U, V) where U and V are vector spaces. Let uj,...,u, and vy,...,v,, be
bases for U and V respectively. The matrix of T with respect to these bases is the
m x n matrix M(T) with entries Aj;, i=1,...,m, j=1,...,n defined by

o

Tug = A1pvi + - + AmkVm M&M w-p««ﬁ ben o Ty
SO LA T
. . ) o~ hags {b
i.e. the kth column of A is the scalars needed to write Tuy, as a Imear combination of

the basis of V- -
Tuk:ZAikVi M(f) - (’4°)>

Je |, ~m.

ol =

Note that since a linear map T € L(U, V) is uniquely determined by its image on a
basis of U, we see that once we pick basis of U and V its matrix representation is
uniquely determined.
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Agionyred dep-

Let D € L(P4(R),P3(R)) be the differentiation map, Dp = p/. Find the matrix of D
with respect to the standard bases of P3(R) and P4(R).

Standard basis: M

= U, By 0

71111) .6 1™ )%9)%q s

T(wp) = | = %

T(uz) = 2= 20,

T(ug) = 710%= 7 Us

T(U5) = 4(4%) o q,t,{‘(

The matrix is: o (
0 6

MT) = | o0

O o

o vO

Q\POO

b5
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® Observe that if we choose bases u1,...,u, and vy,..., vy, for U, V and represent
T € L(U, V) as a matrix M(T), then the corresponding map can be obtained by

just working with the coordinates of vectors in U, V with respect to the chosen
basis

e Ifu=>3"", au; then the coordinates of T(u) with respect to vi,..., vy, can be

obtained by the matrix vector multiplication M( T)a, where a is the n x 1 matrix
with entries «;
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Example

If we want to find the derivative Of_ﬁfwiﬁiz with respect to the
standard monomial basis of P4(R), we use M(D) from the’previous example to obtain

7L'
0100 0\, 0\ owtt
00200 ~10|> =«
MD)a=14 4 ¢ 3 ¢ I 36 [ wt
00004/ |7 4 ) 5 3

Thus, translating back into the monomial basis of P3(R) gives
D(p) = —10x + 36x° + 4x°.
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Other points

® | ooking at matrices as representations of linear maps gives us an intuitive
explanation for why we do matrix multiplication the way we do! In fact, we want
matrix multiplication to represent composition of linear maps

® \We can use matrices to solve linear systems.
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Determinants
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Determinant

® The determinant is a function from M.y, — T, i.e. it is a function from the
entries of a square matrix to a real or complex number.

® Notation: det(A) = |A|

® The determinant has applications in solving linear systems, computing
eigenvalues, etc
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Example: 2 x 2 matrix

The determinant of a 2 x 2 matrix is
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Example: 3 x 3 matrix

There is a trick for finding the determinant of a 3 by 3 matrix:

A= Cc<c Ahfg cdde — oafhe — hdC — cez
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Cofactor expansion

For other n X n matrices, one can compute the determinant using

Definition (Cofactor expansion)

Let A= {aj«}]4_q be a nx n matrix. Let M; denote the determinant of the

(n—1) x (n— 1) matrix obtained by removing the j* row and the k™ column of A.
F/\/‘F\NW(\./W

— TN~
oreachrow j=1,...,n

= o (—1VHRM-
|A|_;a,,k( WM | ———— )

Y-
Similarly, for each column k=1,...,n
At e
n J/ Coltam,
_ L (_1Vtkp.
|Al = E :aj,k( Y™ M k-
=1

The numbers G = (—1)f+k/\/lj,k are called cofactors.
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Proposition
The determinant of a diagonal matrix or triangular matrix is the product of the entries

on the diagonal.
Sketch of proof. (J A = (f{,_\ R ) wpp fle‘aﬁa(ov Vi
0 Ta., ]
97 g\-q.a‘.\:o{—rw ,
n= | A= Cc‘tt) o ATLA= Qo
-
gl,_m')ak_ é:py n—{ pL-}f A = %’l C{L\C\
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Inverse of a matrix

Note: The matrix A is invertible if and only if the linear map represented by the matrix
is an isomorphism.
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Cramer’s rule

Corollary

Suppose A is an n x n invertible matrix. The linear system Ax = b has a unique
solution given by

o = A

1 |A| )

=1,...,n,

where A; is the matrix obtained by replacing the ith column of A with b.
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Transpose of a matrix

Definition
The transpose of an m x n matrix A is the n X m matrix, denoted AT defined
entry-wise as {Afk} = {Ayj} for j=1,...,mand k=1,...n (i.e. the rows of A are

the columns of AT and the columns of A are the rows of AT)

[ 2
- AT (7 7
A ?Zr ’ A 2 T 6

W)

&
3 Statistical Sciences

& UNIVERSITY OF TORONTO
July 22, 2024

23/1



Properties of the determinant

Proposition
|A| # 0 if and only if A is invertible

Proposition

Let A be an n X n real matrix.
@ If A has a zero column, then |A| = 0.
@® If A has two equal columns, then |A| = 0.

®© If one column of A is a multiple of another, then |A| = 0.

O |AB| = |A||B|
@ |eA| =a"|A| fora € F
0 |A7| = |A|
)
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Inner product spaces J
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Complex numbers

&7heﬂp

Recall that for a complex number z= a + ib, we define the following:

® Real part: Re(z) = a,
® Imaginary part: Im(z) = b,

e Complex conjugate

® Modulus: |2| = \/Re(2)2 + Im(2)? = Va2 + b2

We have |z|? = zz and Re(z) = Z52.
o~
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Definition

Let V be an(E/vector space. A function (-,-): V x V — F is called inner product on V
if the following holds:

@ (Conjugate) symmetry: (x,y) = (y,x) for all x,y € V, where 3 denotes the
complex conjugate for a € C

@® Linearity in the first argument: (ax + Ay, z) = a(x,z) + B(y,z) for all x,y,z € V
and o, 8 € F

© Positive definiteness: (x,x) > 0 and (x,x) = 0 if and only if x =10

A vector space equipped with an inner product is called an inner product space.

L2, 06072 = L anepr z) = 0G0 €5253>
w.td. 2.4 Af}y\w’f -
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e Standard inner product on R™: (x,y) = >_7 ; xiy; for x,y € R"
= WL e
e Standard inner product on C™: (x,y) = >_7 ; x;y; for x,y € C"
® On the space of polynomials P,(R): (p,q) = [~; p(x)q(x)dx for p, g € Py(R)

OLL&CL‘— do(ﬁo\.-qlm cs u»’f' c) EWC‘-SC
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Proposition

Let V be an inner product space. Then x = 0 if and only if (x,y) =0 for all y € V.
Proof. (=) Sy 320
Thewn by limeorky
£ 0,55 = Loto, 30 = L 0,50 L0872
Coy>z0 for eV

(&) Tk 277
e (72D <P
o bt Cunp=0 ff #=0 by oletnr o
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Cauchy-Schwarz Inequality

Proposition

Let V be an inner product space. Then

[ )| < V%, x)V/ (Y, y)

for all x,y € V.
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Proposition

Let V be an inner product space. Then (-, -) induces a norm on V via ||x|| = 1/(x, x)

for all x € V.
Proof. fled € haw (U sfrhs dhe caditons  of a womn
() Posibve olefrte

el 20 ge <E¥D 20

il= 0 & £%%r:0 &2 %20 b, oefeid oF

Cuner prodef

Z) ?ca[;_f (l dx{lcm-_ m
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Note: With this identification the Cauchy-Schwarz inequality can be restated as:
[ y)| < [Ix[[[ly[| for all x,y € V.

The norm introduced by the standard inner product on R" is the Euclidean distance.
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