Module 9: Linear Algebra III Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 24, 2024

Outline

- *•* Adjoints, unitaries and orthogonal matrices
- *•* Orthogonal decomposition
- *•* Spectral theory
	- *•* Eigenvalues and eigenvectors
	- Algebraic and geometric multiplicity of eigenvalues
	- *•* Matrix diagonalization

Recall

Definition

Let *V* be an \mathbb{F} -vector space. A function $\langle \cdot, \cdot \rangle$: $V \times V \rightarrow \mathbb{F}$ is called *inner product* on *V* if the following holds:

- **1** (Conjugate) symmetry: $\langle x, y \rangle = \overline{\langle y, x \rangle}$ for all $x, y \in V$, where \overline{a} denotes the complex conjugate for $a \in \mathbb{C}$
- **2** Linearity in the first argument: $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ for all $x, y, z \in V$ and $\alpha, \beta \in \mathbb{F}$
- **3** Positive definiteness: $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0$ if and only if $x = 0$

A vector space equipped with an inner product is called an *inner product space*.

Recall

Example

- Standard inner product on \mathbb{R}^n : $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- Standard inner product on \mathbb{C}^n : $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i \overline{y}_i$ for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$
- \bullet On the space of polynomials $\mathbb{P}_n(\mathbb{R})$: $\langle \bm\rho, \bm q\rangle = \int_{-1}^{1}$ *−*1 *p*(*x*)*q*(*x*)d*x* for *p, q ∈* P*n*(R)

Proposition

Let *V* be an inner product space. Then

$$
|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle}
$$

for all $x, y \in V$.

Proposition

Let V be an inner product space. Then $\langle\cdot,\cdot\rangle$ induces a norm on V via $\|\mathbf{x}\| = \sqrt{\langle\mathbf{x},\mathbf{x}\rangle}$ for all $x \in V$.

Proof.

Note: With this identification the Cauchy-Schwarz inequality can be restated as: $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}||$ for all $\mathbf{x}, \mathbf{y} \in V$.

Example

The norm introduced by the standard inner product on \mathbb{R}^n is the Euclidean distance.

Adjoint

Definition

Let *U*, *V* be inner product spaces and *S*: $U \rightarrow V$ be a linear map. The *adjoint S*^{*} of *S* is the linear map $S^* \colon V \,{\to}\, U$ defined such that

$$
\langle Su, \mathbf{v} \rangle_V = \langle \mathbf{u}, S^* \mathbf{v} \rangle_U \quad \text{for all } \mathbf{u} \in U, \mathbf{v} \in V.
$$

Proposition

Let *U, V* be inner product spaces and *S*: *U → V* be a linear map. Then *S ∗* is unique and linear.

Proof.

Example

Define $S: \mathbb{R}^3 \to \mathbb{R}^2$ by $S\mathbf{x} = (2x_1 + x_3, -x_2)$. What is the adjoint operator S^* ?

Proposition

Let $A \in M_{m \times n}(\mathbb{F})$ be a matrix and $\overline{T_A} : \mathbb{F}^n \to F^m : \mathbf{x} \mapsto A\mathbf{x}$. Then, $T_A^*(\mathbf{x}) = A^* \mathbf{x}$, where $A^* \in M_{n \times m}(\mathbb{F})$ with $(A^*)_{ij} = A_{ji}$ for $i = 1, \ldots, n$ and $j = 1, \ldots, m$.

In particular, if $\mathbb{F} = \mathbb{R}$, the adjoint of the matrix is given by its transpose,denoted $\mathcal{A}^{\mathcal{T}}$, and if $\mathbb{F}=\mathbb{C}$, it is given by its conjugate transpose, denoted A^* .

Proof for \mathbb{R} :

Definition

A matrix $O ∈ M_n(ℝ)$ is called *orthogonal* if its inverse is given by its transpose, i.e. $Q^T Q = Q Q^T = I$

A matrix $U \in M_n(\mathbb{C})$ is called *unitary* if the inverse is given by the conjugate transpose, i.e. *U ∗U* = *UU∗* = *I*.

Example

• Let *φ ∈* [0*,* 2*π*]. Then

$$
\begin{pmatrix}\cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi)\end{pmatrix}
$$

is an orthogonal matrix. What does it describe geometrically?

• The following is a unitary matrix:

$$
\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
$$

Definition

Let $A \in M_n(\mathbb{F})$. We call A *self-adjoint* if $A^* = A$. In the case $\mathbb{F} = \mathbb{R}$, such an A is called *symmetric* and if $\mathbb{F} = \mathbb{C}$, such an *A* is called *Hermitian*.

Orthogonality and Gram-Schmidt

Definition

Two vectors $\mathbf{x}, \mathbf{y} \in V$ are called *orthogonal* if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, denoted $\mathbf{x} \perp \mathbf{y}$. We call them *orthonormal* if additionally the vectors are normalized, i.e. $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$. A basis **x**1*, . . . ,* **x***ⁿ* of *V* is called *orthonormal basis (ONB)*, if the vectors are pairwise orthogonal and normalized.

Proposition

Let $x_1, \ldots, x_k \in V$ be orthonormal. Then the system of vectors is linearly independent.

Proof.

Proposition (Orthogonal Decomposition) Let **x**, **y** ∈ *V* with **y** \neq 0. Then, there exist *c* ∈ *F* and **z** ∈ *V* such that **x** = *c***y** + **z** with **y** *⊥* **z**.

Given a basis, we can obtain an ONB from it using the Gram-Schmidt algorithm by repeating this orthogonal decomposition.

Proposition (Gram-Schmidt Algorithm)

Let $\mathbf{x}_1, \ldots, \mathbf{x}_n \in V$ be a system of linearly independent vectors. Define $\mathbf{y}_1 = \mathbf{x}_1 / ||\mathbf{x}_1||$. For $i = 2, \ldots, n$ define \mathbf{y}_j inductively by

$$
\mathbf{y}_i = \frac{\mathbf{x}_i - \sum_{k=1}^{i-1} \langle \mathbf{x}_i, \mathbf{y}_k \rangle \mathbf{y}_k}{\|\mathbf{x}_i - \sum_{k=1}^{i-1} \langle \mathbf{x}_i, \mathbf{y}_k \rangle \mathbf{y}_k\|}.
$$

Then the y_1, \ldots, y_n are orthonormal and

$$
\mathrm{span}\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}=\mathrm{span}\{\mathbf{y}_1,\ldots,\mathbf{y}_n\}.
$$

The proof is omitted but can be found in the book.

Recall: connection between matrices and linear maps

Multiplication by a matrix defines a linear map

Let $A \in M_{m \times n}$ be a fixed matrix. Then, we can define a linear map $T_A: \mathbb{F}^n \to \mathbb{F}^m$ via $T_A(\mathbf{v}) = A\mathbf{v}$, where we recall matrix vector multiplication $(A\mathbf{v})_i = \sum_{k=1}^n A_{ik}v_k$ for $i = 1, \ldots, m$.

Given a bases for *U* and *V*, $T: U \rightarrow V$ can be written as a matrix

Let *T* ∈ $\mathcal{L}(U, V)$ where *U* and *V* are vector spaces. Let $\mathbf{u}_1, \ldots, \mathbf{u}_n$ and $\mathbf{v}_1, \ldots, \mathbf{v}_m$ be bases for *U* and *V* respectively. The matrix of *T* with respect to these bases is the $m \times n$ matrix $\mathcal{M}(T)$ with entries A_{ii} , $i = 1, \ldots, m$, $j = 1, \ldots, n$ defined by

$$
T\mathbf{u}_k = A_{1k}\mathbf{v}_1 + \cdots + A_{mk}\mathbf{v}_m.
$$

Eigenvalues

Definition

Given an operator *A*: $V \rightarrow V$ and $\lambda \in \mathbb{F}$, λ is called an *eigenvalue* of *A* if there exists a non-zero vector $\mathbf{v} \in V \setminus \{\mathbf{0}\}\$ such that

$$
A\mathbf{v}=\lambda\mathbf{v}.
$$

We call such **v** an *eigenvector* of *A* with eigenvalue *λ*. We call the set of all eigenvalues of *A spectrum* of *A* and denote it by $\sigma(A)$.

Motivation in terms of linear maps: Let $T: V \rightarrow V$ be a linear map, where V is a vector space. We would like to describe the action of this linear map in a particularly "nice" way: such that *T* acts only by scaling, i.e. $T\mathbf{v}_i = \lambda_i \mathbf{v}_i$ where $\lambda_i \in \mathbb{F}$ for $i = 1, \ldots, n$.

Finding eigenvalues

Note: here we will assume $\mathbb{F} = \mathbb{C}$, so that we are working on an algebraically closed field.

- Rewrite A **v** = λ **v** as
- *•* Thus, if *λ* is an eigenvalue, we can find the corresponding eigenvectors by finding the null space of $A - \lambda I$.
- *•* The subspace null(*A − λI*) is called the *eigenspace*
- *•* To find the eigenvalues of *A*, one must find the scalars *λ* such that null(*A − λI*) contains non-trivial vectors (i.e. not **0**)
- *•* Recall: We saw that *T ∈ L*(*U, V*) is injective if and only if null*T* = *{***0***}*.
- *•* Thus *λ* is an eigenvalue if and only if *A − λI* is not invertible.
- Recall: $|A| \neq 0$ if and only if *A* is invertible.
- *•* Thus *λ* is an eigenvalue if and only if

Theorem

The following are equivalent

 $\mathbf{0}$ $\lambda \in \mathbb{F}$ *is an eigenvalue of A*,

$$
\bullet (A - \lambda I)v = 0 \text{ has a non-trivial solution},
$$

$$
\bullet \ |A-\lambda I|=0.
$$

Characteristic polynomial

Definition

If *A* is an $n \times n$ matrix, $p_A(\lambda) = |A - \lambda I|$ is a polynomial of degree *n* called the *characteristic polynomial* of *A*.

To find the eigenvectors of *A*, one needs to find the roots of the characteristic polynomial.

Example

Find the eigenvalues of

$$
\begin{bmatrix} 4 & -2 \\ 5 & -3 \end{bmatrix}.
$$

Multiplicity

Definition

The multiplicity of the root *λ* in the characteristic polynomial is called the *algebraic multiplicity* of the eigenvalue λ . The dimension of the eigenspace null($A - \lambda I$) is called the *geometric multiplicity* of the eigenvalue *λ*.

Definition (Similar matrices)

Square matrices *A* and *B* are called *similar* if there exists an invertible matrix *S* such that

 $A = SBS^{-1}$.

Similar matrices have the same characteristic polynomials and hence the same eigenvalues (see exercise).

Theorem

Suppose A is a square matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ *. Let* $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be *eigenvectors corresponding to these eigenvalues. Then* **v**1*, . . . ,* **v***ⁿ are linearly independent.*

Proof.

Corollary

If a A ∈ Mn(C) *has n distinct eigenvalues, then A is diagonalizable. That is there exists an invertible matrix S ∈ Mn*(C) *such that A* = *SDS−*¹ *, where D is a diagonal matrix with the eigenvalues of A in the diagonal.*

Theorem

Let $A: V \rightarrow V$ be an operator with n eigenvalues. A is diagonalizable if and only if for *each eigenvalue λ, the geometric multiplicity of λ and the algebraic multiplicity of λ are the same.*

Example: a diagonalizable matrix

$$
\begin{bmatrix} 1 & 2 \\ 8 & 1 \end{bmatrix}
$$
 is diagonalizable.

Example continued

Example continued

Example: a matrix that is not diagonalizable

$$
\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
$$
 is *not* diagonalizable.

References

Howard Anton and Chris Rorres. Elementary Linear Algebra. 11th ed. Wiley, 2014

Axler S. *Linear Algebra Done Right*. 3rd ed. Undergraduate Texts in Mathematics. Springer, 2015. Available from: https://link.springer.com/book/10.1007/978-3-319-11080-6

Treil S. *Linear Algebra Done Wrong*. 2017. Available from: https://www.math.brown.edu/streil/papers/LADW/LADW.html