
Module 9: Linear Algebra III
Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 24, 2024

July 24, 2024 1 / 37



Outline

• Adjoints, unitaries and orthogonal matrices

• Orthogonal decomposition

• Spectral theory
• Eigenvalues and eigenvectors
• Algebraic and geometric multiplicity of eigenvalues
• Matrix diagonalization
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Recall

Definition
Let V be an F-vector space. A function ⟨·, ·⟩ : V × V → F is called inner product on V
if the following holds:

1 (Conjugate) symmetry: ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ V, where a denotes the
complex conjugate for a ∈ C

2 Linearity in the first argument: ⟨αx + βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩ for all x, y, z ∈ V
and α,β ∈ F

3 Positive definiteness: ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0

A vector space equipped with an inner product is called an inner product space.
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Recall

Example
• Standard inner product on Rn: ⟨x, y⟩ =

∑n
i=1 xiyi for x, y ∈ Rn

• Standard inner product on Cn: ⟨x, y⟩ =
∑n

i=1 xiyi for x, y ∈ Cn

• On the space of polynomials Pn(R): ⟨p,q⟩ =
∫ 1
−1 p(x)q(x)dx for p,q ∈ Pn(R)

Proposition
Let V be an inner product space. Then

|⟨x, y⟩| ≤
√
⟨x, x⟩

√
⟨y, y⟩

for all x, y ∈ V.
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Proposition
Let V be an inner product space. Then ⟨·, ·⟩ induces a norm on V via ∥x∥ =

√
⟨x, x⟩

for all x ∈ V.

Proof.
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Note: With this identification the Cauchy-Schwarz inequality can be restated as:
|⟨x, y⟩| ≤ ∥x∥∥y∥ for all x, y ∈ V.

Example
The norm introduced by the standard inner product on Rn is the Euclidean distance.
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Adjoint

Definition
Let U,V be inner product spaces and S : U → V be a linear map. The adjoint S∗ of S
is the linear map S∗ : V → U defined such that

⟨Su, v⟩V = ⟨u, S∗v⟩U for all u ∈ U, v ∈ V.
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Proposition
Let U,V be inner product spaces and S : U → V be a linear map. Then S∗ is unique
and linear.

Proof.
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Example
Define S : R3 → R2 by Sx = (2x1 + x3,−x2). What is the adjoint operator S∗?
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Proposition
Let A ∈ Mm×n(F) be a matrix and TA : Fn → Fm : x *→ Ax. Then, T∗

A(x) = A∗x,
where A∗ ∈ Mn×m(F) with (A∗)ij = Aji for i = 1, . . . , n and j = 1, . . . ,m.

In particular, if F = R, the adjoint of the matrix is given by its transpose,denoted AT,
and if F = C, it is given by its conjugate transpose, denoted A∗.
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Proof for R:

July 24, 2024 13 / 37

< Ax ,2)= 4) Ye

- At Y

-A
= <x

,
A

+

z



Definition
A matrix O ∈ Mn(R) is called orthogonal if its inverse is given by its transpose, i.e.
OTO = OOT = I.
A matrix U ∈ Mn(C) is called unitary if the inverse is given by the conjugate transpose,
i.e. U∗U = UU∗ = I.
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Example
• Let ϕ ∈ [0, 2π]. Then (

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)

is an orthogonal matrix. What does it describe geometrically?
• The following is a unitary matrix:

(
0 −i
i 0

)
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Definition
Let A ∈ Mn(F). We call A self-adjoint if A∗ = A. In the case F = R, such an A is
called symmetric and if F = C, such an A is called Hermitian.
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Orthogonality and Gram-Schmidt

Definition
Two vectors x, y ∈ V are called orthogonal if ⟨x, y⟩ = 0, denoted x ⊥ y. We call them
orthonormal if additionally the vectors are normalized, i.e. ∥x∥ = ∥y∥ = 1. A basis
x1, . . . , xn of V is called orthonormal basis (ONB), if the vectors are pairwise
orthogonal and normalized.
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Proposition
Let x1, . . . , xk ∈ V be orthonormal. Then the system of vectors is linearly independent.

Proof.
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Proposition (Orthogonal Decomposition)
Let x, y ∈ V with y ̸= 0. Then, there exist c ∈ F and z ∈ V such that x = cy + z with
y ⊥ z.

Given a basis, we can obtain an ONB from it using the Gram-Schmidt algorithm by
repeating this orthogonal decomposition.
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Proposition (Gram-Schmidt Algorithm)
Let x1, . . . , xn ∈ V be a system of linearly independent vectors. Define y1 = x1/∥x1∥.
For i = 2, . . . , n define yj inductively by

yi =
xi −

∑i−1
k=1⟨xi, yk⟩yk

∥xi −
∑i−1

k=1⟨xi, yk⟩yk∥
.

Then the y1, . . . , yn are orthonormal and

span{x1, . . . , xn} = span{y1, . . . , yn}.

The proof is omitted but can be found in the book.
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Recall: connection between matrices and linear maps

Multiplication by a matrix defines a linear map
Let A ∈ Mm×n be a fixed matrix. Then, we can define a linear map TA : Fn → Fm via
TA(v) = Av, where we recall matrix vector multiplication (Av)i =

∑n
k=1 Aikvk for

i = 1, . . . ,m.

Given a bases for U and V, T : U → V can be written as a matrix
Let T ∈ L(U,V) where U and V are vector spaces. Let u1, . . . , un and v1, . . . , vm be
bases for U and V respectively. The matrix of T with respect to these bases is the
m × n matrix M(T) with entries Aij, i = 1, . . . ,m, j = 1, . . . , n defined by

Tuk = A1kv1 + · · ·+ Amkvm.
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Eigenvalues

Definition
Given an operator A : V → V and λ ∈ F, λ is called an eigenvalue of A if there exists a
non-zero vector v ∈ V \ {0} such that

Av = λv.

We call such v an eigenvector of A with eigenvalue λ. We call the set of all
eigenvalues of A spectrum of A and denote it by σ(A).

Motivation in terms of linear maps: Let T : V → V be a linear map, where V is a vector
space. We would like to describe the action of this linear map in a particularly “nice”
way: such that T acts only by scaling, i.e. Tvi = λivi where λi ∈ F for i = 1, . . . , n.
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Finding eigenvalues
Note: here we will assume F = C, so that we are working on an algebraically closed
field.

• Rewrite Av = λv as
• Thus, if λ is an eigenvalue, we can find the corresponding eigenvectors by finding

the null space of A − λI.
• The subspace null(A − λI) is called the eigenspace
• To find the eigenvalues of A, one must find the scalars λ such that null(A − λI)

contains non-trivial vectors (i.e. not 0)
• Recall: We saw that T ∈ L(U,V) is injective if and only if nullT = {0}.
• Thus λ is an eigenvalue if and only if A − λI is not invertible.
• Recall: |A| ̸= 0 if and only if A is invertible.
• Thus λ is an eigenvalue if and only if
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Theorem
The following are equivalent

1 λ ∈ F is an eigenvalue of A,
2 (A − λI)v = 0 has a non-trivial solution,
3 |A − λI| = 0.
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Characteristic polynomial

Definition
If A is an n × n matrix, pA(λ) = |A − λI| is a polynomial of degree n called the
characteristic polynomial of A.

To find the eigenvectors of A, one needs to find the roots of the characteristic
polynomial.
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Example

Find the eigenvalues of [
4 −2
5 −3

]
.
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Multiplicity

Definition
The multiplicity of the root λ in the characteristic polynomial is called the algebraic
multiplicity of the eigenvalue λ. The dimension of the eigenspace null(A − λI) is called
the geometric multiplicity of the eigenvalue λ.
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Definition (Similar matrices)
Square matrices A and B are called similar if there exists an invertible matrix S such
that

A = SBS−1.

Similar matrices have the same characteristic polynomials and hence the same
eigenvalues (see exercise).
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Theorem
Suppose A is a square matrix with distinct eigenvalues λ1, . . . ,λn. Let v1, . . . , vn be
eigenvectors corresponding to these eigenvalues. Then v1, . . . , vn are linearly
independent.

Proof.
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Plugging into (*)
, we have
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Corollary
If a A ∈ Mn(C) has n distinct eigenvalues, then A is diagonalizable. That is there
exists an invertible matrix S ∈ Mn(C) such that A = SDS−1, where D is a diagonal
matrix with the eigenvalues of A in the diagonal.
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Theorem
Let A : V → V be an operator with n eigenvalues. A is diagonalizable if and only if for
each eigenvalue λ, the geometric multiplicity of λ and the algebraic multiplicity of λ
are the same.
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Example: a diagonalizable matrix

[
1 2
8 1

]
is diagonalizable.
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Example continued
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Example continued
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Example: a matrix that is not diagonalizable

[
1 1
0 1

]
is not diagonalizable.
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