Module 9: Linear Algebra III Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 24, 2024

Outline

- Adjoints, unitaries and orthogonal matrices
- Orthogonal decomposition
- Spectral theory
 - Eigenvalues and eigenvectors
 - Algebraic and geometric multiplicity of eigenvalues
 - Matrix diagonalization

Recall

Definition

Let V be an \mathbb{F} -vector space. A function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{F}$ is called *inner product* on V if the following holds:

- (Conjugate) symmetry: $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ for all $\mathbf{x}, \mathbf{y} \in V$, where \overline{a} denotes the complex conjugate for $a \in \mathbb{C}$
- 2 Linearity in the first argument: $\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and $\alpha, \beta \in \mathbb{F}$
- **③** Positive definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} = \mathbf{0}$

A vector space equipped with an inner product is called an *inner product space*.

Recall

Example

- Standard inner product on \mathbb{R}^n : $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- Standard inner product on \mathbb{C}^n : $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i \overline{y}_i$ for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$
- On the space of polynomials $\mathbb{P}_n(\mathbb{R})$: $\langle \boldsymbol{p}, \boldsymbol{q} \rangle = \int_{-1}^1 p(x) q(x) dx$ for $\boldsymbol{p}, \boldsymbol{q} \in \mathbb{P}_n(\mathbb{R})$

Proposition

Let V be an inner product space. Then

$$\langle \mathbf{x}, \mathbf{y} \rangle | \leq \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle}$$

for all $\mathbf{x}, \mathbf{y} \in V$.

Proposition

Let V be an inner product space. Then $\langle \cdot, \cdot \rangle$ induces a norm on V via $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ for all $\mathbf{x} \in V$.

Proof.

Note: With this identification the Cauchy-Schwarz inequality can be restated as: $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}||$ for all $\mathbf{x}, \mathbf{y} \in V$.

Example

The norm introduced by the standard inner product on \mathbb{R}^n is the Euclidean distance.

Adjoint

Definition

Let U, V be inner product spaces and $S: U \to V$ be a linear map. The *adjoint* S^* of S is the linear map $S^*: V \to U$ defined such that

$$\langle S\mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, S^* \mathbf{v} \rangle$$
 for all $\mathbf{u} \in U, \mathbf{v} \in V$.

Proposition

Let U, V be inner product spaces and $S: U \rightarrow V$ be a linear map. Then S^* is unique and linear.

Proof. Lut R, T both satisfies the condition of adjoint St. $\langle 5u, w \rangle = \langle u, Rw \rangle = \langle u, Tw \rangle$ (u, (R-T)u) = 0((R-T) ~, u> = 0 ... < (R-T) v, u> = 0 Sim 1/15 holds for and 4 60, we must have $(12-7) \sim = 0$ for $\forall \sim \in V$. July 24, 2024 Y OF TORONTO

9/37

:. RN= TN for MAN

Example

Stat:

Define $S: \mathbb{R}^3 \to \mathbb{R}^2$ by $S\mathbf{x} = (2x_1 + x_3, -x_2)$. What is the adjoint operator S^* ?

$$\begin{aligned} u_{SL} & \langle S \gamma_{1} \gamma \rangle = \langle \gamma_{1} S^{*} \Im \rangle \\ & \mathcal{L}\mathcal{H}S = \left\langle (2\pi_{1} + \chi_{3} - \pi_{2}), (\gamma_{1}, \gamma_{2}) \right\rangle \\ & \varepsilon & (2\pi_{1} + \chi_{3}) \mathscr{L}_{1} - \gamma_{2} \mathscr{L}_{2} \\ & = & \gamma_{1} \cdot (2\lambda_{1}) + \gamma_{2} (-\gamma_{2}) + \chi_{3} \cdot \mathscr{L}_{1} \\ & = & \langle (\gamma_{1}, \gamma_{2}, \gamma_{3}), (2\lambda_{1}, -\vartheta_{2}, \gamma_{2}) \rangle \\ & \xrightarrow{\text{stell Sciences}} \end{aligned}$$

Proposition

Let $A \in M_{m \times n}(\mathbb{F})$ be a matrix and $T_A \colon \mathbb{F}^n \to F^m \colon \mathbf{x} \mapsto A\mathbf{x}$. Then, $T^*_A(\mathbf{x}) = A^*\mathbf{x}$, where $A^* \in M_{n \times m}(\mathbb{F})$ with $(A^*)_{ij} = \overline{A_{ji}}$ for i = 1, ..., n and j = 1, ..., m.

In particular, if $\mathbb{F} = \mathbb{R}$, the adjoint of the matrix is given by its transpose, denoted A^{T} , and if $\mathbb{F} = \mathbb{C}$, it is given by its conjugate transpose, denoted A^* .

Proof for \mathbb{R} .

 $\langle A x, y \rangle = \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} A_{ij} x_j \right) 2c$

 $= \sum_{i\geq 1}^{n} \sum_{c=1}^{n} A_{ci} \chi_{i} \chi_{c}$ $= \sum_{j\geq 1}^{n} \varphi_j \left(\sum_{j=1}^{n} A_{ij} \gamma_i \right)$

 $= \langle \chi, A^{T} \mathcal{G} \rangle$

Definition

A matrix $O \in M_n(\mathbb{R})$ is called *orthogonal* if its inverse is given by its transpose, i.e. $O^T O = OO^T = I.$ A matrix $U \in M_n(\mathbb{C})$ is called *unitary* if the inverse is given by the conjugate transpose, i.e. $U^*U = UU^* = I.$

Let U he unitary.

$$\langle U_X, U_Y \rangle = \langle X, U^T U_Y \rangle = \langle X, 3 \rangle$$

= Id
 T does not change inner product
July 24, 2024 14/37

Example

• Let $\varphi \in [0, 2\pi]$. Then

$$egin{pmatrix} \cos(arphi) & -\sin(arphi) \ \sin(arphi) & \cos(arphi) \end{pmatrix}$$
 Robotics

is an orthogonal matrix. What does it describe geometrically?

• The following is a unitary matrix:

$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \sim A$$

 $A A^{\mathsf{T}} = \begin{pmatrix} 0 & -c \\ c & 0 \end{pmatrix} \begin{pmatrix} 0 & -c \\ c & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{L} = \begin{pmatrix} 0 & -c \\ c & 0 \end{pmatrix}$

Statistical Sciences UNIVERSITY OF TORONTO $A^{\mathsf{T}} = \overline{A}^{\mathsf{T}} = \begin{pmatrix} 0 & c \\ -c & 0 \end{pmatrix}^{\mathsf{T}}$

Definition

Let $A \in M_n(\mathbb{F})$. We call <u>A self-adjoint</u> if $A^* = A$. In the case $\mathbb{F} = \mathbb{R}$, such an A is called symmetric and if $\mathbb{F} = \mathbb{C}$, such an A is called Hermitian.

Orthogonality and Gram-Schmidt

Definition

Two vectors $\mathbf{x}, \mathbf{y} \in V$ are called *orthogonal* if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, denoted $\mathbf{x} \perp \mathbf{y}$. We call them *orthonormal* if additionally the vectors are normalized, i.e. $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$. A basis $\mathbf{x}_1, \ldots, \mathbf{x}_n$ of V is called *orthonormal basis (ONB)*, if the vectors are pairwise orthogonal and normalized.

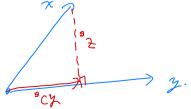
Proposition

Let $\mathbf{x}_1, \ldots, \mathbf{x}_k \in V$ be orthonormal. Then the system of vectors is linearly independent.

Let $\int di Xi = 0$. Need to show $d_1 = \cdots = d_{N_2} = 0$. Proof. Since $\int_{C_{1}}^{h} de \chi_{c} = 0$, $\left\| \int_{C_{1}}^{h} de \chi_{c} \right\|_{c}^{2} = 0$ Expanding the PHS, $0 = \int_{C_{1}}^{h} |de|^{2} ||\chi_{c}||^{2} + \int_{C_{1}}^{\infty} de dr \langle \chi_{c}, \chi_{5} \rangle$ $= \int_{c_1}^{t_2} |d_{\mathcal{C}}|^2 \frac{|l| \chi_{\mathcal{C}} |l|^2}{|c_1|^2} = \int_{c_1}^{t_2} |d_{\mathcal{C}}|^2$ Thenfore $d_{\mathcal{C}} = 0$ for $\forall \mathcal{C}$.

Proposition (Orthogonal Decomposition) Let $\mathbf{x}, \mathbf{y} \in V$ with $\mathbf{y} \neq 0$. Then, there exist $c \in F$ and $\mathbf{z} \in V$ such that $\mathbf{x} = c\mathbf{y} + \mathbf{z}$ with $\mathbf{y} \perp \mathbf{z}$.

Given a basis, we can obtain an ONB from it using the Gram-Schmidt algorithm by repeating this orthogonal decomposition.



Proposition (Gram-Schmidt Algorithm)

Let $\mathbf{x}_1, \ldots, \mathbf{x}_n \in V$ be a system of linearly independent vectors. Define $\mathbf{y}_1 = \mathbf{x}_1 / ||\mathbf{x}_1||$. For $i = 2, \ldots, n$ define \mathbf{y}_j inductively by

$$m{y}_i = rac{\mathbf{x}_i - \sum_{k=1}^{i-1} \langle \mathbf{x}_i, \mathbf{y}_k
angle \mathbf{y}_k}{\|\mathbf{x}_i - \sum_{k=1}^{i-1} \langle \mathbf{x}_i, \mathbf{y}_k
angle \mathbf{y}_k\|}$$

Then the $\mathbf{y}_1, \ldots, \mathbf{y}_n$ are orthonormal and

$$\operatorname{span}\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}=\operatorname{span}\{\mathbf{y}_1,\ldots,\mathbf{y}_n\}.$$

The proof is omitted but can be found in the book.

Recall: connection between matrices and linear maps

Multiplication by a matrix defines a linear map

Let $A \in M_{m \times n}$ be a fixed matrix. Then, we can define a linear map $T_A \colon \mathbb{F}^n \to \mathbb{F}^m$ via $T_A(\mathbf{v}) = A\mathbf{v}$, where we recall matrix vector multiplication $(A\mathbf{v})_i = \sum_{k=1}^n A_{ik}v_k$ for i = 1, ..., m.

Given a bases for U and V, $T: U \rightarrow V$ can be written as a matrix

Let $T \in \mathcal{L}(U, V)$ where U and V are vector spaces. Let $\mathbf{u}_1, \ldots, \mathbf{u}_n$ and $\mathbf{v}_1, \ldots, \mathbf{v}_m$ be bases for U and V respectively. The matrix of T with respect to these bases is the $m \times n$ matrix $\mathcal{M}(T)$ with entries A_{ij} , $i = 1, \ldots, m$, $j = 1, \ldots, n$ defined by

$$T\mathbf{u}_k = A_{1k}\mathbf{v}_1 + \cdots + A_{mk}\mathbf{v}_m.$$

Eigenvalues

Definition

Given an operator $A: V \to V$ and $\lambda \in \mathbb{F}$, λ is called an *eigenvalue* of A if there exists a non-zero vector $\mathbf{v} \in V \setminus \{\mathbf{0}\}$ such that

$$A\mathbf{v} = \lambda \mathbf{v}.$$

We call such \underline{v} an *eigenvector* of A with eigenvalue λ . We call the set of all eigenvalues of A spectrum of A and denote it by $\sigma(A)$.

Motivation in terms of linear maps: Let $T: V \to V$ be a linear map, where V is a vector space. We would like to describe the action of this linear map in a particularly "nice" way: such that T acts only by scaling, i.e. $T\mathbf{v}_i = \lambda_i \mathbf{v}_i$ where $\lambda_i \in \mathbb{F}$ for i = 1, ..., n.

Finding eigenvalues

Note: here we will assume $\mathbb{F}=\mathbb{C},$ so that we are working on an algebraically closed field.

- Rewrite $A\mathbf{v} = \lambda \mathbf{v}$ as $(A \lambda L)M = 0$ (A. λL) $M \in [err(A \lambda L)]$
- Thus, if λ is an eigenvalue, we can find the corresponding eigenvectors by finding the null space of $A \lambda I$.
- The subspace null $(A \lambda I)$ is called the *eigenspace*
- To find the eigenvalues of A, one must find the scalars λ such that null $(A \lambda I)$ contains non-trivial vectors (i.e. not **0**) If $d_{10}\overline{v} = d_{10}V = M$, Tis inwittly
- Recall: We saw that $T \in \mathcal{L}(U, V)$ is injective if and only if null $T = \{\mathbf{0}\}$.
- Thus λ is an eigenvalue if and only if $A \lambda I$ is not invertible. Thus $\lambda = A \lambda L$ is injective.
- Recall: $|A| \neq 0$ if and only if A is invertible.
- Thus λ is an eigenvalue if and only if

Statistical Sciences UNIVERSITY OF TORONTO

July 24, 2024 23 / 37

d-t (A-XZ) = 0

Theorem

The following are equivalent

 $A - \lambda I = 0.$

1 $\lambda \in \mathbb{F}$ is an eigenvalue of A,

2
$$(A-\lambda I)\mathbf{v}=0$$
 has a non-trivial solution,

solving this polynomial equation to obtain eigenvalues of A.

Characteristic polynomial

Definition

If A is an $n \times n$ matrix, $p_A(\lambda) = |A - \lambda I|$ is a polynomial of degree n called the characteristic polynomial of A.

To find the eigenvectors of A, one needs to find the roots of the characteristic polynomial.

Example

Find the eigenvalues of

$$A = \begin{bmatrix} 4 & -2 \\ 5 & -3 \end{bmatrix}.$$

$$|A - \lambda 1 (z)|_{5} = |A - \lambda - 2|_{5} = (4 - \lambda)(-) - \lambda + (0)$$

$$= |\lambda^{2} - \lambda - (2 + 10) = |\lambda^{2} - \lambda - 2|_{5} = (\lambda - 2)(\lambda + 1) = 0$$

$$= |\lambda^{2} - \lambda - (2 + 10) = |\lambda^{2} - \lambda - 2|_{5} = (\lambda - 2)(\lambda + 1) = 0$$

Multiplicity

$\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{2}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{2}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{2}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$ $\mathcal{P}(\lambda) = \lambda^{2} (\lambda - 1)^{3} (\lambda - 2)^{3}$

Definition

The multiplicity of the root λ in the characteristic polynomial is called the <u>algebraic</u> <u>multiplicity</u> of the eigenvalue λ . The dimension of the eigenspace null($A - \lambda I$) is called the <u>geometric multiplicity</u> of the eigenvalue λ .

Definition (Similar matrices)

Square matrices A and B are called *similar* if there exists an invertible matrix S such that

 $A = SBS^{-1}.$

Similar matrices have the same characteristic polynomials and hence the same eigenvalues (see exercise).

Theorem

÷

Suppose A is a square matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be eigenvectors corresponding to these eigenvalues. Then $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent.

Proof. By induction on
$$M$$
.
Base case $n > 1$: Trivial sine there is only one vector M_1
Suppose. N_1, \dots, M_2 are linerally independe.
Let $\sum_{i=1}^{n+1} d_i N_i = 0$. \cdots (κ)
Applying A to the both sides,
Suppose $\sum_{i=1}^{n+1} d_i \chi_i N_i = 0$. $--- (1)$
Dury 24.2024

29/37

July 24, 2024 30 / 37

Plugging into (*), we have $d_{471} = 0$: $d_{471} = 0$

Corollary

If a $A \in M_n(\mathbb{C})$ has n distinct eigenvalues, then A is diagonalizable. That is there exists an invertible matrix $S \in M_n(\mathbb{C})$ such that $A = SDS^{-1}$, where D is a diagonal matrix with the eigenvalues of A in the diagonal.

Let
$$\mathcal{N}_i$$
 be eigenvector correspondy to eigenvector λ_i ,
 $\mathcal{J} = (\mathcal{N}_i - \cdots - \mathcal{N}_n), \quad \mathcal{D} = \begin{pmatrix} \lambda_i & \mathcal{O} \\ \mathcal{O} & \lambda_n \end{pmatrix}$
Then $A\mathcal{J} = (A\mathcal{N}_i - \cdots - A\mathcal{N}_n) = (\lambda_1 \mathcal{N}_1 - \cdots - \lambda_n \mathcal{N}_n)$
arithmed Sciences
 $NIVERSITY OF TORONTO$

$$= \mathcal{J}_{UIV} \mathcal{J}_{24}, 2024$$

31/37

Theorem

Let $A: V \to V$ be an operator with n eigenvalues. A is diagonalizable if and only if for each eigenvalue λ , the geometric multiplicity of λ and the algebraic multiplicity of λ are the same.

Example: a diagonalizable matrix

$$\begin{bmatrix} 1 & 2 \\ 8 & 1 \end{bmatrix}$$
 is diagonalizable.
$$\begin{bmatrix} (-\lambda & 2 \\ 8 & (-\lambda) \end{bmatrix} = (\lambda^2 - 2\lambda + 1) - (6 = \lambda^2 - 2\lambda - 15)$$
$$= (\lambda - 5) (\lambda + 3) = 0 \quad (-\lambda + 5) = 0$$

ergenvelnes.

Example continued

 $\lambda = -3 \qquad \begin{pmatrix} 4 & 2 \\ 8 & 4 \end{pmatrix} \begin{pmatrix} \chi \\ 3 \end{pmatrix} = 0$ 27+22-0 we can alwore $\begin{pmatrix} & \\ -2 \end{pmatrix}$ 27-3:0 $\begin{pmatrix} -4 & 2 \\ 8 & -4 \end{pmatrix} \begin{pmatrix} x \\ 2 \end{pmatrix} = 0$ $\lambda = 5$ we can chorse (2)

Example continued

 $S = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ This we may choose = $\frac{1}{4}$ $\begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix}$ $5^{-1}A5 = \frac{1}{4} \begin{pmatrix} 2 & -1 \\ 2 & l \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 8 & l \end{pmatrix} \begin{pmatrix} 1 & l \\ -2 & 2 \end{pmatrix}$ $=\frac{1}{4}\begin{pmatrix}-6&3\\10&5\end{pmatrix}\begin{pmatrix}1&1\\-2&2\end{pmatrix}=\frac{1}{4}\begin{pmatrix}-12&0\\0&20\end{pmatrix}$ $= \begin{pmatrix} -3 & 0 \\ 0 & t \end{pmatrix}$

July 24 202

Example: a matrix that is not diagonalizable

8

UNIVERS

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ is not diagonalizable.}$$

$$\begin{vmatrix} (-\lambda & 1 \\ 0 & (-\lambda) \end{vmatrix} = \lambda^{2} - 2\lambda + (= (\lambda - ()^{2} = 0)$$

$$\lambda = 1 \quad \text{with algebraic multiplicity 2.}$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \chi \\ 2 \end{pmatrix} = \begin{pmatrix} \chi \\ 0 \end{pmatrix} = 0 \quad \text{frot}$$

$$\int \text{some.}$$

$$k_{er} (A - I) = \langle (b) \rangle \quad \text{genefric multiplicity = 1}$$

$$\int y \neq 24, 2024 \quad 36/37$$

References

Howard Anton and Chris Rorres. Elementary Linear Algebra. 11th ed. Wiley, 2014

Axler S. *Linear Algebra Done Right*. 3rd ed. Undergraduate Texts in Mathematics. Springer, 2015. Available from: https://link.springer.com/book/10.1007/978-3-319-11080-6

Treil S. *Linear Algebra Done Wrong*. 2017. Available from: https://www.math.brown.edu/streil/papers/LADW/LADW.html

