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Outline

• Logic

• Review of Proof Techniques
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Propositional logic

Propositions are statements that could be true or false. They have a corresponding
truth value.

ex. “n is odd” and “n is divisible by 2” are propositions . Let’s call them P and Q.
Whether they are true or not depends on what n is.

We can negate statements: ¬P is the statement “n is not odd”

We can combine statements:

• P → Q is the statement:

• P ↑ Q is the statement:
We always assume the inclusive or unless specifically stated otherwise.
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Examples

Symbol Meaning
capital letters propositions

=↓ implies
→ and
↑ inclusive or
¬ not

• If it’s not raining, I won’t bring my
umbrella.

• I’m a banana or Toronto is in Canada.

• If I pass this exam, I’ll be both happy
and surprised.
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Truth values

Example

If it is snowing, then it is cold out.
It is snowing.
Therefore, it is cold out.

Write this using propositional logic:

How do we know if this statement is true or not?
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Truth table

If it is snowing, then it is cold out.

When is this true or false?

P =↓ Q

P Q P =↓ Q
T T
T F
F T
F F
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Logical equivalence

P =→ Q

P Q P =→ Q
T T T
T F F
F T T
F F T

¬P ↑ Q

P Q ¬P ¬P ↑ Q
T T
T F
F T
F F

What is ¬(P =→ Q)?
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Quantifiers

For all

“for all” (also read “for any”), →, is also called the universal quantifier.

If P(x) is some property that applies to x from some domain, then →xP(x) means that
the property P holds for every x in the domain.

“Every real number has a non-negative square.” We write this as

How do we prove a for all statement?
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Quantifiers

There exists

“there exists”, ↑, is also called the existential quantifier.
If P(x) is some property that applies to x from some domain, then ↑xP(x) means that
the property P holds for some x in the domain.

4 has a square root in the reals. We write this as

How do we prove a there exists statement?

There is also a special way of writing when there exists a unique element: ↑! .
For example, we write the statement “there exists a unique positive integer square root
of 64” as
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Combining quantifiers

Often we will need to prove statements where we combine quantifiers.
Here are some examples:

Statement Logical expression
Every non-zero rational number has a
multiplicative inverse

→q ↓ Q \ {0}, ↑s ↓ Q such that qs = 1

Each integer has a unique additive in-
verse

→x ↓ Z , ↑!y ↓ Z such that x + y = 0

f : R ↔ R is continuous at x0 ↓ R →ω > 0 ↑ε > 0 such that whenever |x ↗
x0| < ε, |f (x)↗ f (x0)| < ω
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Quantifier order & negation

The order of quantifiers is important! Changing the order changes the meaning.
Consider the following example. Which are true? Which are false?

→x ↓ R →y ↓ R x + y = 2
→x ↓ R ↑y ↓ R x + y = 2
↑x ↓ R →y ↓ R x + y = 2
↑x ↓ R ↑y ↓ R x + y = 2

Negating quantifiers:

¬→xP(x) = ↑x(¬P(x))
¬↑xP(x) = →x(¬P(x))
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The negations of the statements above are:
(Note that we use De Morgan’s laws, which are in your exercises:
¬(P ↘ Q) = ¬P ≃ ¬Q and ¬(P ≃ Q) = ¬P ↘ ¬Q.)

Logical expression Negation
→q ↓ Q \ {0}, ↑s ↓ Q such that qs = 1 ↑q ↓ Q \ {0} such that →s ↓ Q, qs ⇐=

1 space space space space space space
space space space space

→x ↓ Z , ↑!y ↓ Z such that x + y = 0 ↑x ↓ Z such that (→y ↓ Z, x + y ⇐= 0)
≃ (↑y1, y2 ↓ Z such that y1 ⇐= y2 ↘ x +
y1 = 0 ↘ x + y2 = 0 )

→ω > 0 ↑ε > 0 such that whenever |x ↗
x0| < ε, |f (x)↗ f (x0)| < ω

↑ω > 0 such that →ε > 0, |x ↗ x0| < ε
and |f (x)↗ f (x0)| ⇒ ω

What do these mean in English?
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Types of proof

• Direct

• Contradiction

• Contrapositive

• Induction
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Direct Proof

Approach: Use the definition and known results.

Example

Claim

The product of an even number with another integer is even.

Approach: use the definition of even.
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Direct Proof

Claim
The product of an even number with another integer is even.

Definition
We say that an integer n is even if there exists another integer j such that n = 2j .
We say that an integer n is odd if there exists another integer j such that n = 2j + 1.

Proof.
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Definition

Let a, b ↓ Z. We say that “a divides b”, written a|b, if the remainder is zero when b is
divided by a, i.e. ↑j ↓ Z such that b = aj .

Example

Let a, b, c ↓ Z with a ⇐= 0. Prove that if a|b and b|c , then a|c .

Proof.
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Claim
If an integer squared is even, then the integer is itself even.

How would you approach this proof?
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Proof by contrapositive

P =⇑ Q

P Q P =⇑ Q
T T T
T F F
F T T
F F T

¬Q =⇑ ¬P

P Q ¬P ¬Q ¬Q =⇑ ¬P
T T F F
T F F T
F T T F
F F T T
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Proof by contrapositive

Claim
If an integer squared is even, then the integer is itself even.

Proof.
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Proof by contradiction

Claim
The sum of a rational number and an irrational number is irrational.

Proof.
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Summary

In sum, to prove P =⇑ Q:

Direct proof: assume P , prove Q
Proof by contrapositive: assume ¬Q, prove ¬P
Proof by contradiction: assume P ↘ ¬Q and derive something that is impossible
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Induction

Well-ordering principle for N
Every nonempty set of natural numbers has a least element.

Principle of mathematical induction

Let n0 be a non-negative integer. Suppose P is a property such that

1 (base case) P(n0) is true

2 (induction step) For every integer k ⇒ n0, if P(k) is true, then P(k + 1) is true.

Then P(n) is true for every integer n ⇒ n0

Note: Principle of strong mathematical induction: For every integer k ⇒ n0, if P(n) is
true for every n = n0, . . . , k , then P(k + 1) is true.
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Claim

n! > 2n if n ⇒ 4 (n ↓ N).

Proof.
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Claim
Every integer n ⇒ 2 can be written as the product of primes.

Proof. We prove this by strong induction on n.

Base case:

Inductive hypothesis:

Inductive step:
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