Module 1: Proofs Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 7, 2025

Outline

- Logic
- Review of Proof Techniques

Propositional logic

Propositions are statements that could be true or false. They have a corresponding truth value. T.F

ex. "n is odd" and "n is divisible by 2" are propositions. Let's call them P and Q. Whether they are true or not depends on what n is. P(n) Q(n)

We can negate statements: $\neg P$ is the statement "n is not odd"

We can combine statements:

- $P \wedge Q$ is the statement: P and Q = "n is odd and divisible by 2"• $P \vee Q$ is the statement: P or Q = "n is odd or divisible by 2"We always assume the inclusive or unless specifically stated otherwise.

LIPVA COVERS PAQ

July 7, 2025

3/25

Examples

Symbol	Meaning
capital letters	propositions
\Rightarrow	implies
\wedge	and
V	inclusive or
	not

- If it's <u>not</u> raining, I wo<u>n't</u> bring my umbrella.
 (¬P) ⇒ (¬Q)
- I'm a banana or Toronto is in Canada.
- If I pass this exam, I'll be both happy and surprised.

$$P \Rightarrow (Q \land R)$$

Truth values

Example

If it is snowing, then it is cold out.

It is snowing. \rightarrow ?

Therefore, it is cold out. $\rightarrow \Box$

Write this using propositional logic:

$$P \Rightarrow Q$$

How do we know if this statement is true or not?

Truth table

If it is snowing, then it is cold out.

When is this true or false?

P = Q is true () 4 C Q

=7 (7PVQ) = PA7Q

P => Q (=> P C Q)

P C Q = Universal set.

€ 7 P V Q.

Quantifiers

For all

"for all" (also read "for any"), \forall , is also called the universal quantifier.

If P(x) is some property that applies to x from some domain, then $\forall x P(x)$ means that the property P holds for every x in the domain.

"Every real number has a non-negative square." We write this as

How do we prove a for all statement?

Quantifiers

There exists

"there exists", (\exists , is also called the existential quantifier.

If P(x) is some property that applies to x from some domain, then $\exists x P(x)$ means that the property P holds for some x in the domain.

4 has a square root in the reals. We write this as

How do we prove a there exists statement?

Combining quantifiers

Often we will need to prove statements where we combine quantifiers. Here are some examples:

∀ Statement

Logical expression

Every non-zero rational number has a multiplicative inverse

TX EQ (63, = 2 EQ (63, x2=1

A

Each integer has a unique additive in-

 $f: \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in \mathbb{R}$

Quantifier order & negation

The order of quantifiers is important! Changing the order changes the meaning. Consider the following example. Which are true? Which are false?

$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y = 2$$
 $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x + y = 2$
 $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y = 2$
 $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x + y = 2$
 $\exists x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x + y = 2$

Negating quantifiers:

$$\neg \forall x P(x) = \exists x (\neg P(x))$$
$$\neg \exists x P(x) = \forall x (\neg P(x))$$

The negations of the statements above are:

(Note that we use De Morgan's laws, which are in your exercises:

$$\neg(P \land Q) = \neg P \lor \neg Q \text{ and } \neg(P \lor Q) = \neg P \land \neg Q.)$$

$$\forall q \in \mathbb{Q} \setminus \{0\}, \exists s \in \mathbb{Q} \text{ such that } qs = 1$$

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \text{such that whenever} \ |x - x_0| < \delta, \ |f(x) - f(x_0)| < \epsilon$$

ELERYOF, PSER SIT, ESTI

Frez st.

Types of proof

- Direct
- Contradiction
- Contrapositive
- Induction

Direct Proof

Approach: Use the definition and known results.

Example

Claim

The product of an even number with another integer is even.

Approach: use the definition of even.

Direct Proof

Claim

The product of an even number with another integer is even.

Definition

We say that an integer n is **even** if there exists another integer j such that n = 2j. We say that an integer n is **odd** if there exists another integer j such that n = 2j + 1.

Proof. Let
$$m, n \in \mathbb{Z}$$
 and assume M is every.

Then $\exists j \in \mathbb{Z}$ i.f. $M = 2j$.

Then $MM = m \cdot (2i) = 2(mj) = even by definition$

Definition

Let $a, b \in \mathbb{Z}$. We say that "a divides b", written a|b, if the remainder is zero when b is divided by a, i.e. $\exists i \in \mathbb{Z}$ such that b = ai.

Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$. Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.

That meas alc.

Claim

If an integer squared is even, then the integer is itself even.

How would you approach this proof?

$$\chi^{2} = 2m$$

$$\chi = \pm \sqrt{2m}$$
How to remove $\int ad$
show χ is even?

Direct proof doesn't work well.

July 7, 2025

Proof by contrapositive

Proof by contrapositive

Claim

If an integer squared is even, then the integer is itself even.

Proof. We'll prove this by contra positive.

WTS: If x is odd, then
$$\chi^2$$
 is odd. $7P$

Proof by contradiction

Instead of P=Q,

assume PATA and find

Claim

The sum of a rational number and an irrational number is irrational.

Proof.

Suppose Xt y = S E Q

Then 3 = 5- x = rational, which is conductions

 \bigcirc

Therefore, x+3 must be irrational.

Summary

In sum, to prove $P \implies Q$:

Direct proof: assume P, prove Q

Proof by contrapositive: assume $\neg Q$, prove $\neg P$

Proof by contradiction: assume $P \wedge \neg Q$ and derive something that is impossible

Induction

Well-ordering principle for $\mathbb N$

Every nonempty set of natural numbers has a least element.

Principle of mathematical induction

Let n_0 be a non-negative integer. Suppose P is a property such that

- **1** (base case) $P(n_0)$ is true
- ② (induction step) For every integer $k \ge n_0$, if P(k) is true, then P(k+1) is true.

Then P(n) is true for every integer $n \ge n_0$

Note: Principle of strong mathematical induction: For every integer $k \ge n_0$, if P(n) is true for every $n = n_0, \ldots, k$, then P(k + 1) is true.

Claim

$$n! > 2^n$$
 if $n \ge 4$ $(n \in \mathbb{N})$.

Proof.

Thun
$$(/2t)! = (/4t) \times /2! > (/2t) \times /2! \ge 2 \times 2! = 2^{/2t}$$

n! > 2"

Claim

Every integer $n \ge 2$ can be written as the product of primes.

Proof. We prove this by strong induction on n.

Base case:

Inductive hypothesis:

Inductive step: written as the product of primes

2) It has not a prime, and E(2, h) s.t.

Note the inductive hypotheses to both a and b.

Then, by the nuture hypotheses, both a and b.

Con he written as the preducts of primes.

Po, had = ab can also be written as the product of primes.

References

Gerstein, Larry J. (2012). *Introduction to Mathematical Structures and Proofs*. Undergraduate Texts in Mathematics. url: https://link.springer.com/book/10.1007/978-1-4614-4265-3

Lakins, Tamara J. (2016). *The Tools of Mathematical Reasoning*. Pure and Applied Undergraduate Texts.

