
Module 2: Set Theory

Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 9, 2025

July 9, 2025 1 / 26



Outline

• Review of basic set theory

• Ordered Sets

• Functions

July 9, 2025 2 / 26



Introduction to Set Theory

• We define a set to be a collection of mathematical objects.

• If S is a set and x is one of the objects in the set, we say x is an element of S and
denote it by x → S .

• The set of no elements is called empty set and is denoted by ↑.
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Definition (Subsets, Union, Intersection)

Let S ,T be sets.

• We say that S is a subset of T , denoted S ↓ T , if s → S implies s → T .

• We say that S = T if S ↓ T and T ↓ S .

• We define the union of S and T , denoted S ↔ T , as all the elements that are in
either S or T .

• We define the intersection of S and T , denoted S ↗ T , as all the elements that
are in both S and T .

• We say that S and T are disjoint if S ↗ T = ↑.
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Some examples

Example

N ↓ N0 ↓ Z ↓ Q ↓ R ↓ C

Example

Let a, b → R such that a < b.
Open interval: (a, b) := {x → R : a < x < b} (a, b may be ↘≃ or +≃)
Closed interval: [a, b] := {x → R : a ⇐ x ⇐ b}
We can also define half-open intervals.
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Example

Let A = {x → N : 3|x} and B = {x → N : 6|x} Show that B ↓ A.

Proof.
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Di!erence of sets

Definition

Let A,B ↓ X . We define the set-theoretic di!erence of A and B , denoted A \ B
(sometimes A↘ B) as the elements of X that are in A but not in B .
The complement of a set A ↓ X is the set Ac := X \ A.

Example

Let X ↓ R be defined as X = {x → R : 0 < x ⇐ 40} = (0, 40]. Then

X
c =
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Recall that for sets S ,T :

• the union of S and T , denoted S ↔ T , is all the elements that are in either S and
T

• and the intersection of S and T , denoted S ↗ T , is all the elements that are in
both S and T .

We extend the definition of union and intersection to an arbitrary family of sets as
follows:

Definition
Let Sω, ω → A, be a family of sets. A is called the index set. We define

⋃

ω→A
Sω := {x : ⇒ω such that x → Sω},

⋂

ω→A
Sω := {x : x → Sω for all ω → A}.
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Example
↑⋃

n=1

[↘n, n] =

↑⋂

n=1

(
↘1

n
,
1

n

)
=
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Theorem (De Morgan’s Laws)

Let {Sω}ω→A be an arbitrary collection of sets. Then

(
⋃

ω→A
Sω

)c

=
⋂

ω→A
S
c
ω and

(
⋂

ω→A
Sω

)c

=
⋃

ω→A
S
c
ω

Proof.
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Since a set is itself a mathematical object, a set can itself contain sets.

Definition

The power set P(S) of a set S is the set of all subsets of S .

Example

Let S = {a, b, c}.
Then P(S) =
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Another way of building a new set from two old ones is the Cartesian product of two
sets.

Definition

Let S ,T be sets. The Cartesian product S → T is defined as the set of tuples with
elements from S ,T , i.e

S → T = {(s, t) : s ↑ S and t ↑ T}.

This can also be extended inductively to a finite family of sets.
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Ordered set

Definition
A relation R on a set X is a subset of X → X . A relation ↓ is called a partial order on
X if it satisfies

1 reflexivity:

2 transitivity:

3 anti-symmetry:

The pair (X ,↓) is called a partially ordered set.

A chain or totally ordered set C ↔ X is a subset with the property x ↓ y or y ↓ x for
any x , y ↑ C .
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Example

The real numbers with the usual ordering, (R,→) are totally ordered.

Example

The power set of a set X with the ordering given by ↑, (P(X ),↑) is a partially
ordered set.
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Example

Let X = {a, b, c , d}. What is P(X )? Find a chain in P(X ).

P(X ) = {↓, {a}, {b}, {c}, {d}, {a, b}, {b, c}, {c , d}, {b, d}, {a, c}, {a, d}, {a, b, c},
{b, c , d}, {a, b, d}, {a, c , d},X}

July 9, 2025 15 / 26

{ i 3 C {uib } a { cibic }xachain



Example

Consider the set C ([0, 1],R) := {f : [0, 1] ↔ R : f is continuous}.

For two functions f , g ↗ C ([0, 1],R), we define the ordering as f → g if f (x) → g(x)
for x ↗ [0, 1]. Then (C ([0, 1],R),→) is a partially ordered set.

Can you think of a chain that is a subset of (C ([0, 1],R)?
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Definition

A non-empty partially ordered set (X ,→) is well-ordered if every non-empty subset
A ↑ X has a mimimum element.

Example:

(N,→) is...

(R,→) is...
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Definition

Let (X ,→) be a partially ordered set and S ↑ X .

Then x ↗ X is an upper bound for S if for all s ↗ S we have s → x .
Similarly, y ↗ X is a lower bound for S if for all s ↗ S , y → s.

If there exists an upper bound for S , we call S bounded above and if there exists a
lower bound for S , we call S bounded below. If S is bounded above and bounded
below, we say S is bounded.
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We can also ask if there exists a least upper bound or a greatest lower bound.

Definition

Let (X ,→) be a partially ordered set and S ↑ X .

We call x ↗ X least upper bound or supremum, denoted x = sup S , if x is an upper
bound and for any other upper bound y ↗ X of S we have x → y .

Likewise, x ↗ X is the greatest lower bound or infimum for S , denoted x = inf S , if it
is a lower bound and for any other lower bound y ↗ X , y → x .

Note that the supremum and infimum of a bounded set do not necessarily need to exist.
However, if they do exists they are unique, which justifies the article the (exercise).
Nevertheless, the reals have a remarkable property, which we will take as an axiom.
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Completeness Axiom

Let S ↑ R be bounded above. Then there exists r ↗ R such that r = sup S , i.e. S has
a least upper bound.

By setting S
→ = ↘S := {↘s : s ↗ S} and noting inf S = ↘ sup S →, we obtain a similar

statement for infima if S is bounded below. As mentioned above, this property is fairly
special, for example it fails for the rationals.

Example

Let S = {q ↗ Q : x
2 < 7}. Then S is bounded above in Q, but there exists no least

upper bound in Q.
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There is a nice alternative characterization for suprema in the real numbers.

Proposition

Let S ↑ R be bounded above. Then r = sup S if and only if r is an upper bound and

for all ω > 0 there exists an s ↗ S such that r ↘ ω < s.

Proof. (≃)
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Proof. (⇐)

Using the same trick, we may obtain a similar result for infima.

Example

Consider S = {1/n : n ↗ N}. Then sup S = 1 and inf S = 0.
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Functions

Definition
A function f from a set X to a set Y is a subset of X ⇒ Y with the properties:

1 For every x ↗ X , there exists a y ↗ Y such that (x , y) ↗ f

2 If (x , y) ↗ f and (x , z) ↗ f , then y = z .

X is called the domain of f .

How does this connect to other descriptions of functions you may have seen?

Example

For a set X , the identity function is:

1X : X ↔ X , x ⇑↔ x
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Definition (Image and pre-image)

Let f : X ↔ Y and A ↑ X and B ↑ Y .

• The image of f is the set f (A) := {f (x) : x ↗ A}.
• The pre-image of f is the set f ↑1(B) := {x : f (x) ↗ B}.

Helpful way to think about it for proofs:

Image: If y ↗ f (A), then y ↗ Y , and there exists an x ↗ A such that y = f (x).

Pre-image: If x ↗ f
↑1(B), then x ↗ X and f (x) ↗ B .
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Definition (Surjective, injective and bijective)

Let f : X ↔ Y , where X and Y are sets. Then

• f is injective if x1 ⇓= x2 implies f (x1) ⇓= f (x2)

• f is surjective if for every y ↗ Y , there exists an x ↗ X such that y = f (x)

• f is bijective if it is both injective and surjective

Example

Let f : X ↔ Y , x ⇑↔ x
2.

f is surjective if
f is injective if
f is bijective if
f is neither surjective nor injective if
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