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® More on set theory
® Cardinality of sets

® Metrics and norms
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Recall Mg ’f—@)—j/iﬂ (

Definition (Image and pre-image)

Let f: X —>Yand AC X and BCY. (ye ~Mnag—.
® The image of f is the set f(A) := {f(x) : x € A} + ‘/7
® The pre-image of f is the set f~1(B) := {x : f(x) € B}. \@ - (g

Definition (Surjective, injective and bijective)

Let f: X — Y, where X and Y are sets. Then
o f is injective if x; # xp implies f(x1) # f(x2)
e f is surjective if for every y € Y, there exists an x € X such that y = f(x)

® f is bijective if it is both injective and surjective

4
3 Statistical Sciences
& UNIVERSITY OF TORONTO

July 10, 2025

3/29



Tujeekae = X Toples f)y Had

¥ [

Eiw,\mloJH/ -J:hct)ﬁ 5;{“6/) l“'L.P l"fJ A= Uz .

§l/r/\~«tfh\'1 . i e, Prev st fery): A

Tu ¢t 1= Fx)

Df)\tc,“,‘w_ - Bo f(’\ N J\w'{‘l\/‘t oA §m/|)\6c/{?\/t
=2 Yy Flxex i, 9~ )

NAAANAN
un Ti“‘

( __; Tuverse W Sp {\/’ ) Wt,bl a’ftvcf‘m-%
X ‘]/
,;




Proposition

Let f : X — Y and A C X. Prove that A C f~1(f(A)), with equalityFfEf is injective
Proof.
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Cardinality

Intuitively, the cardinality of a set A, denoted |A|, is the number of elements in the set.
For sets with only a finite number of elements, this intuition is correct. We call a set

with finitely many elements finite.

We say that the empty set has cardinality 0 and is finite.
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Proposition

Y Cansrsfs o ,J<m44«f5

If X is finite set of cardinality n, then the cardinality of P(X) is 2".
Proof.
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Definition

Two sets A and B have same cardinality, |A| = |B], if there exists bijection f : A — B.

Which is bigger, N or Ng? /. [ (= [Nl
lt =0 b Fo) -
TL\—(H ,J: r$ hufly et e Sy e,
thinbor 5 biyectae el [N (W],
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Cantor-Schroder-Bernstein = T+ T 75 st~ S0 A 2 ftA) &5 biective,

Definition

We say that the cardinality of a set A is less than the cardinality of a set B, denoted
|A| < |B] if there exists an injection f : A — B.

Theorem (Cantor-Bernstein)

Let A, B, be sets. If |A] < |B]| and_]B\\§|A\, then [A] = [B|.

IN| = |N x N| T3 (Al A~ few | praz A
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Proof that [N| = [N x N|: [} Cavdyy, = Bevnsfon
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Let A be a set.
@ A is finite if there exists an n € N and a bijection f : {1,...,n} - A
® A is countably infinite if there exists a bijection f : N — A

© A is countable if it is finite or countably infinite

@ A is uncountable otherwise
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The rational numbers are countable, and in fact |Q| = |NJ. I

Proof. First we show |N| < |QT].

st od P.;H—p‘v*( y‘a'fl‘nha.{s'
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eg. A= 2

Z =
T
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The cardinality of N is smaller than that of (0,1).
oot

First, we show that there is an injective map from N to (0, 1).
LA fn)- ,,H, 2o [l g leu]

Next, we show that there is no surjective map from N to (0, 1). We use the fact that
_—— = 5 R —

every number r € (0,1) has a binary expansion of the form r = 0.010203 ... where
o;€{0,1}, i eN. — ' O
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Now we suppose in order to derive a contradiction that there does exist a surjective
map f from N to (0, 1)., i.e. for n € N we have f(n) = 0.01(n)oa(n)os(n).... This
means we can list out the binary expansions, for example like

na)
f(1) =0.00000000. . .

( 0%4>)
£(2) =0.1Q11111111 ...
Ak)
£(3) =0.0101010101 ...
£(4) =0.1010101010 ..

We will construct a number 7 € (0, 1) that is not in the image of f. O
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Define ¥ = 0.6165 . . ., where we define the nth entry of ¥ to be the the opposite of the
nth entry of the nth item in our list:

Then ¥ differs from f(n) at least in the nth digit of its binary expansion for all n € N.

Hence, ¥ & f(N), which is iction to f being surjective. This technique is often

referred to as Cantor's diagonal argument. D)
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(0,1) and R have the same cardinality.

V.
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We have shown that there are different sizes of infinity, as the cardinality of N is
infinite but still smaller than that of R or (0,1). In fact, we have

IN|= |No| = Z] = |Q| {|R].
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Because of this, there are special symbols for these two cardinalities: The cardinality of
N is denoted while the cardinality of R is denote
In fact there are many other cardinalities, as the following theorem shows:

Theorem (Cantor's theorem)

For any set A,

Al < [P(A)]
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Definition (Metric)
A metric on a set X is a function d : X x X — R that satisfies:

(a) Positive definiteness: L(®,H20 v Y ok lK,H)=0 o ¥z >
(b) Symmetry: nee ’9\) = o (7, 7()
(c) Triangle inequality: o (% ‘9—) + Ay2) 2 Lix=2)

A set together with a metric is called a metric space.
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Example (R” with the Euclidean distance)

Alrs) = m\ Y%y eR”
@l !
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Definition (Norm)

A norm on an(Fivector space E is a function || - || : E — R that satisfies:

(a) Positive definiteness: llx(tzo0 y vf?( CE af  UEY=0 chf Y=0
(b) Homogeneity: o “xef, "weF  llax( = (&l I

(c) Triangle inequality: Y9 CFE , (x=2d £ Wi+ hzl|

A vector space with a norm is called a normed space. A normed space is a metric
space using the metric d(x,y) = |[x — y||.
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Example (p-norm on R")

The p-norm is defined for p > 1 for a vector x = (xq, .. x,,) € R" as

(U, = 3 X {’f’)

\,\/L-(,—\_ /p 22 / 2— oV w = '(_'A-Cl*\ld-ﬂ—\.. uorm |

The infinity norm is the limit of the p-norm as p — oo, defined as

oty = s 2
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Example (p-norm on C([0, 1];R) )

If we look at the space of continuous functions C([0,1]; R), the p-norm is

| 7
L Ay = ( jlyf'-(r}['fom(

and the co—norm (or sup norm) is

\F, = o [Fm]

x C—l[r,l]
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Definition

A subset A of a metric space (X, d) is bounded if there exists M > 0 such that
d(x,y) < M for all x,y € A.
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Definition

Let (X, d) be a metric space. We define the open ball centred at a point xp € X of
radius r > 0 as
B(x0) :=={x € X : d(x,x0) < r}.

In R with the usual norm (absolute value), open balls are symmetric open intervals,
i.e.
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Example: Open ball in R? with different metrics

X2 X2
[_O r L ‘__‘_‘[Q, r L

(a) 1-norm (taxicab metric) (b) 2-norm (Euclidean metric) (c) oo-norm

Figure: B,(0) for different metrics
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