Module 3: Set theory and metrics Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 10, 2025

Outline

- More on set theory
- Cardinality of sets
- Metrics and norms

Recall

Definition (Image and pre-image)

Let $f: X \to Y$ and $A \subseteq X$ and $B \subseteq Y$.

Pre-inage.

- The *image* of f is the set $f(A) := \{f(x) : x \in A\}$.
- The pre-image of f is the set $f^{-1}(B) := \{x : f(x) \in B\}$.

Definition (Surjective, injective and bijective)

Let $f: X \to Y$, where X and Y are sets. Then

- f is *injective* if $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$
- f is surjective if for every $y \in Y$, there exists an $x \in X$ such that y = f(x)
- f is bijective if it is both injective and surjective

Injective: xittz implies fr) + f(x2) Equivolently, f(x)=f(x) implies x= x2. Surjudan: 3 ET, 3 xex s.t. firs= 3 Y = f(x) All points are filled. In short, Y= f(x) Bijective: Both rejective and surjective 4367, 3! x6x s.y. y=f(x) Inverse map fol is well-defined

Proposition

Let $f: X \to Y$ and $A \subseteq X$. Prove that $A \subseteq f^{-1}(f(A))$, with equality $\overrightarrow{iff} f$ is injective.

Proof.

We first show $A \subset f^{-1}(f(A))$.

We need to show a EA implies a Ef-(f(A))

€ f(c) e f(A)

This is true because aEA.

Next we show "if" part.

We need to show

A cf (f(A)) and f (f(A)) c A.

already done by the first part.

Let $\alpha \in f^{1}(f(A))$.

Thus, is equivalent to $f(\alpha) \in f(A)$.

Then there exists $\alpha' \in A$ sit. $f(\alpha) = f(\alpha')$.

Since f is injective, $\alpha = \alpha' \in A$.

Thus, we have $f^{-1}(f(A)) \subset A$.

Cardinality

Intuitively, the *cardinality* of a set A, denoted |A|, is the number of elements in the set. For sets with only a finite number of elements, this intuition is correct. We call a set with finitely many elements finite.

We say that the empty set has cardinality 0 and is finite.

Proposition

If X is finite set of cardinality n, then the cardinality of $\mathcal{P}(X)$ is 2^n .

Proof. K consists of m elements

Statistical Sciences UNIVERSITY OF TORONTO

Definition

Two sets A and B have same cardinality, |A| = |B|, if there exists bijection $f : A \to B$.

Example

Which is bigger, \mathbb{N} or \mathbb{N}_0 ? A. $|\mathcal{W}| = |\mathcal{W}_0|$ Let $f: \mathcal{W} \to \mathcal{W}$ be f(m) = m - 1.
Then f is both injection and surjustive.

Thenfor f is bijective and IN (= (No).

Cantor-Schröder-Bernstein If f is injective, $f: A \rightarrow f(A)$ is bijective.

Definition

We say that the cardinality of a set A is less than the cardinality of a set B, denoted $|A| \leq |B|$ if there exists an injection $f: A \to B$.

Theorem (Cantor-Bernstein)

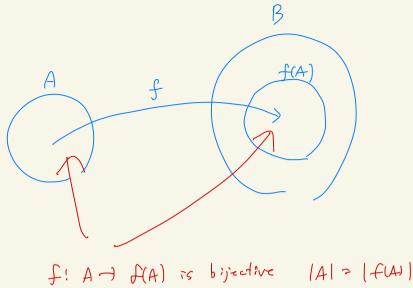
Let A, B, be sets. If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

Example

This does not had for furthe set

$$|N| = |N \times N|$$

If $|A| = n$, then $|A \times A| = n^2$



Let FEAD C B.

So, we should define [A] = [B] Proof that $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$: $|\mathcal{B}_{7}|$ Cantar Bernstein. Let $f: \mathbb{N} \to \mathbb{N} \times (\mathbb{N})$ by f(n) = (n, 1)

Thus $n \neq m$ implies $f(n) = (n_1) + (m_2) = f(m)$ Thus f is injective, which means $|N| \leq |N| \times |N|$.

Thus f is injective, which means $|N| \leq |N \times |N|$. Let $g: N \times |N| \to N$ be

 $g(n,m) = 2^n \cdot 3^n$ If g(n,m) = g(n',m'), then $2^n \cdot 3^n = 2^n \cdot 3^n$.

Statistical Sciences

Since 2 and 3 are destruct privates, we must have m = n', m = n'.

10 / 29

Ċ

Statistical Sciences
UNIVERSITY OF TORONTO Thus 9 is injective and INXNI & /W! July 10, 2025

Definition

Let A be a set.

- **1** A is *finite* if there exists an $n \in \mathbb{N}$ and a bijection $f: \{1, \ldots, n\} \to A$
- **2** A is countably infinite if there exists a bijection $f: \mathbb{N} \to A$
- **3** *A* is *countable* if it is finite or countably infinite
- **4** A is *uncountable* otherwise

Example

The rational numbers are countable, and in fact $|\mathbb{Q}| = |\mathbb{N}|$.

Proof. First we show $|\mathbb{N}| \leq |\mathbb{Q}^+|$.

set of positive rationals

Next, we show that $|\mathbb{Q}^+| \leq |\mathbb{N} \times \mathbb{N}|$. Recall $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.

L+ &(2) = (V, 5)

Then $U: \mathbb{D}^{\dagger} \to \mathcal{N} \times \mathcal{N}$ is injective.

Let $\mathcal{E}_1 = {}^{V}S_1$, $\mathcal{E}_2 = {}^{V}S_2$ and $\mathcal{C}(\mathcal{E}_1) = \mathcal{C}(\mathcal{E}_2)$.

Stical Sciences Versity of Toronto $(Y_1, S_1) = (Y_2, S_2) : Y_1 = Y_2, S_1 = S_2 =) \mathcal{E}_1 = \mathcal{E}_2$

For & EDT, 2! r, S EN sit. &= 5, when

r and s are mutually prime.

By Cater-Berstein, we know that (Q+ = IN)

We can extend this to \mathbb{O} as follows:

She
$$|O^{\dagger}| = |IN|$$
, there exists $f_{+}: Q^{\dagger} \rightarrow N$ which is bijective.

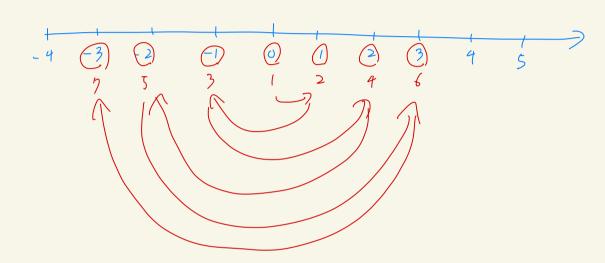
Usry
$$f_{+}$$
, we can define a bijection $f_{-}: Q \rightarrow Z$ by
$$f_{-}(-2) = -f_{+}(E)$$

Then we can define bijection
$$f: \mathbb{Q} \to \mathbb{A}$$
 by
$$f(\mathfrak{E}) = \begin{cases} f_{+}(\mathfrak{E}) & \text{if } \mathfrak{E} > 0 \\ 0 & \text{if } \mathfrak{E} = \emptyset \end{cases} \to |\mathbb{Q}| = |\mathfrak{Z}|$$
Statistical Sciences

14 / 29

Let g: 2 - N by the follows way

Now the proof is reduced to schowing (2 = IN)



Theorem

The cardinality of \mathbb{N} is smaller than that of (0,1).

Proof.

First, we show that there is an injective map from $\mathbb N$ to (0,1).

Next, we show that there is no surjective map from $\mathbb N$ to (0,1). We use the fact that every number $r\in(0,1)$ has a binary expansion of the form $r=0.\sigma_1\sigma_2\sigma_3\ldots$ where $\sigma_i\in\{0,1\},\ i\in\mathbb N$.

Proof.

Now we suppose in order to derive a contradiction that there does exist a surjective map f from $\mathbb N$ to (0, 1)., i.e. for $n \in \mathbb N$ we have $\underline{f(n) = 0.\sigma_1(n)\sigma_2(n)\sigma_3(n)\dots}$ This means we can list out the binary expansions, for example like

$$f(1) = 0.00000000...$$

 $f(2) = 0.10111111111...$
 $f(3) = 0.0101010101...$
 $f(4) = 0.1010101010...$

We will construct a number $\tilde{r} \in (0,1)$ that is not in the image of f.

Proof.

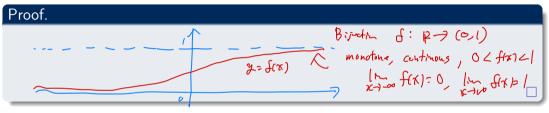
Define $\tilde{r} = 0.\tilde{\sigma}_1\tilde{\sigma}_2...$, where we define the *n*th entry of \tilde{r} to be the opposite of the *n*th entry of the *n*th item in our list:

$$ilde{\sigma}_n = egin{cases} 1 & ext{if } \sigma_n(n) = 0, \ 0 & ext{if } \sigma_n(n) = 1. \end{cases}$$

Then \tilde{r} differs from f(n) at least in the nth digit of its binary expansion for all $n \in \mathbb{N}$. Hence, $\tilde{r} \notin f(\mathbb{N})$, which is a contradiction to f being surjective. This technique is often referred to as Cantor's diagonal argument.

Proposition

(0,1) and \mathbb{R} have the same cardinality.



We have shown that there are different sizes of infinity, as the cardinality of $\mathbb N$ is infinite but still smaller than that of $\mathbb R$ or (0,1). In fact, we have

$$|\mathbb{N}| = |\mathbb{N}_0| = |\mathbb{Z}| \le |\mathbb{Q}| < |\mathbb{R}|.$$

July 10, 2025 18 / 29

Because of this, there are special symbols for these two cardinalities: The cardinality of $\mathbb N$ is denoted $(\mathfrak C)$ while the cardinality of $\mathbb R$ is denoted $(\mathfrak C)$. In fact there are many other cardinalities, as the following theorem shows:

Theorem (Cantor's theorem)

For any set A, $|A| < |\mathcal{P}(A)|$.

19 / 29

Metric Spaces

meters a genelization of "distance"

Definition (Metric)

A *metric* on a set X is a function $d: X \times X \to \mathbb{R}$ that satisfies:

- (a) Positive definiteness: d(7,2) =0 for x= y
- (b) Symmetry: $\lambda(x, y) = \lambda(y, x)$
- (c) Triangle inequality: $d(\gamma, \gamma) + d(\gamma, z) \ge d(\gamma, z)$

A set together with a metric is called a metric space.

July 10, 2025 21 / 29

Example (\mathbb{R}^n with the Euclidean distance)

Definition (Norm)

A *norm* on an \mathbb{F} vector space E is a function $\|\cdot\|: E \to \mathbb{R}$ that satisfies:

- (a) Positive definiteness: $\|\gamma\|_{20}$, $\forall \chi \in \mathbb{F}$ and $\|\chi\|_{20}$ iff $\chi=0$
- (c) Triangle inequality: マベルタ (| メイタ) 至 (| メイタ) 至 (| メイタ) を (| メータ)

A vector space with a norm is called a normed space. A normed space is a metric space using the metric d(x, y) = ||x - y||.

Example (p-norm on \mathbb{R}^n)

The *p*-norm is defined for $p \ge 1$ for a vector $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ as

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{p}$$

The infinity norm is the limit of the *p*-norm as $p \to \infty$, defined as

July 10, 2025 24 / 29

Example $(\emph{p} ext{-norm on } \emph{C}([0,1];\mathbb{R})\)$

If we look at the space of continuous functions $C([0,1];\mathbb{R})$, the p-norm is

$$\|f\|_{p} = \left(\int_{0}^{1} |f(x)|^{p} dx\right)^{p}$$

and the ∞ -norm (or sup norm) is

July 10, 2025 25 / 29

Definition

A subset A of a metric space (X, d) is bounded if there exists M > 0 such that d(x, y) < M for all $x, y \in A$.

Definition

Let (X, d) be a metric space. We define the *open ball* centred at a point $x_0 \in X$ of radius r > 0 as

$$B_r(x_0) := \{x \in X : d(x, x_0) < r\}.$$

Example

In $\mathbb R$ with the usual norm (absolute value), open balls are symmetric open intervals, i.e.

Example: Open ball in \mathbb{R}^2 with different metrics

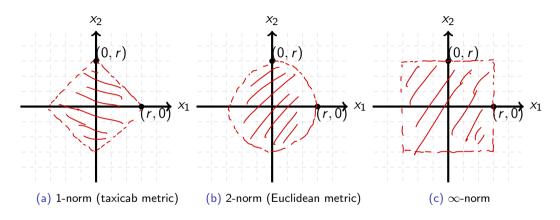


Figure: $B_r(0)$ for different metrics

July 10, 2025

28 / 29

References

Runde, Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). *Lecture notes in Mathematics for Economics and Statistics*. url: http://84.89.132.1/piotr/docs/RealAnalysisNotes.pdf

