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Outline

• More on set theory

• Cardinality of sets

• Metrics and norms
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Recall

Definition (Image and pre-image)

Let f : X → Y and A ↑ X and B ↑ Y .

• The image of f is the set f (A) := {f (x) : x ↓ A}.
• The pre-image of f is the set f →1

(B) := {x : f (x) ↓ B}.

Definition (Surjective, injective and bijective)

Let f : X → Y , where X and Y are sets. Then

• f is injective if x1 ↔= x2 implies f (x1) ↔= f (x2)

• f is surjective if for every y ↓ Y , there exists an x ↓ X such that y = f (x)

• f is bijective if it is both injective and surjective

July 10, 2025 3 / 29

inage 団や 通

ー

毎回



Injective : xiets implies feilt flxz)

X 丫

関*tarxia.
Equircluutly

,
fiei) = flez) inplies か= X

Surjectine
:

tYEY
,
axeysit . fax : 2

Y = f(x )
X

円 ⑲
All points are filled .

Iu short
,
{ = f( x )

Bijective : Both injective ad surjective

RZEy , a ! mX
s

- t
. y = flx )

unique

SIversemapfl
iswell - definel

X 丫

99



Proposition

Let f : X → Y and A ↑ X . Prove that A ↑ f →1
(f (A)), with equality i! f is injective.

Proof.
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Cardinality

Intuitively, the cardinality of a set A, denoted |A|, is the number of elements in the set.

For sets with only a finite number of elements, this intuition is correct. We call a set

with finitely many elements finite.

We say that the empty set has cardinality 0 and is finite.
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Proposition

If X is finite set of cardinality n, then the cardinality of P(X ) is 2n.

Proof.

July 10, 2025 6 / 29

aknstsof n elements

X = Ex , …
, 3

EA

FarAcy, for
eachxi

→ ) 2 options for each i
.

→ QA

Siva dal , -
"

in
,
there are 2

r

distonct subats of y
.



July 10, 2025 7 / 29



Definition

Two sets A and B have same cardinality, |A| = |B |, if there exists bijection f : A → B .

Example

Which is bigger, N or N0?
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Cantor-Schröder-Bernstein

Definition
We say that the cardinality of a set A is less than the cardinality of a set B , denoted
|A| ↑ |B | if there exists an injection f : A → B .

Theorem (Cantor-Bernstein)

Let A, B , be sets. If |A| ↑ |B | and |B | ↑ |A|, then |A| = |B |.

Example

|N| = |N↓ N|
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Proof that |N| = |N→ N|:
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Definition
Let A be a set.

1 A is finite if there exists an n ↑ N and a bijection f : {1, . . . , n} ↓ A

2 A is countably infinite if there exists a bijection f : N ↓ A

3 A is countable if it is finite or countably infinite

4 A is uncountable otherwise
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Example

The rational numbers are countable, and in fact |Q| = |N|.

Proof. First we show |N| ↔ |Q+|.
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Next, we show that |Q+| ↔ |N→ N|.
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We can extend this to Q as follows:
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Theorem

The cardinality of N is smaller than that of (0, 1).

Proof.

First, we show that there is an injective map from N to (0, 1).

Next, we show that there is no surjective map from N to (0, 1). We use the fact that

every number r → (0, 1) has a binary expansion of the form r = 0.ω1ω2ω3 . . . where
ωi → {0, 1}, i → N.
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Proof.
Now we suppose in order to derive a contradiction that there does exist a surjective

map f from N to (0, 1)., i.e. for n → N we have f (n) = 0.ω1(n)ω2(n)ω3(n) . . .. This
means we can list out the binary expansions, for example like

f (1) =0.00000000 . . .

f (2) =0.1111111111 . . .

f (3) =0.0101010101 . . .

f (4) =0.1010101010 . . .

We will construct a number r̃ → (0, 1) that is not in the image of f .
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Proof.
Define r̃ = 0.ω̃1ω̃2 . . ., where we define the nth entry of r̃ to be the the opposite of the

nth entry of the nth item in our list:

ω̃n =

{
1 if ωn(n) = 0,

0 if ωn(n) = 1.

Then r̃ di!ers from f (n) at least in the nth digit of its binary expansion for all n → N.
Hence, r̃ ↑→ f (N), which is a contradiction to f being surjective. This technique is often

referred to as Cantor’s diagonal argument.
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Proposition

(0,1) and R have the same cardinality.

Proof.

We have shown that there are di!erent sizes of infinity, as the cardinality of N is

infinite but still smaller than that of R or (0, 1). In fact, we have

|N| |N0| |Z| |Q| |R|.
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Because of this, there are special symbols for these two cardinalities: The cardinality of

N is denoted ↓0, while the cardinality of R is denoted c.
In fact there are many other cardinalities, as the following theorem shows:

Theorem (Cantor’s theorem)

For any set A, |A| < |P(A)|.
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Metric Spaces
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Definition (Metric)

A metric on a set X is a function d : X ↔ X ↗ R that satisfies:

(a) Positive definiteness:

(b) Symmetry:

(c) Triangle inequality:

A set together with a metric is called a metric space.
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Example (Rn with the Euclidean distance)
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Definition (Norm)

A norm on an F-vector space E is a function ↘ · ↘ : E ↗ R that satisfies:

(a) Positive definiteness:

(b) Homogeneity:

(c) Triangle inequality:

A vector space with a norm is called a normed space. A normed space is a metric

space using the metric d(x , y) = ↘x ≃ y↘.
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Example (p-norm on Rn)

The p-norm is defined for p ⇐ 1 for a vector x = (x1, . . . , xn) → Rn
as

The infinity norm is the limit of the p-norm as p ↗ ⇒, defined as
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Example (p-norm on C ([0, 1];R) )
If we look at the space of continuous functions C ([0, 1];R), the p-norm is

and the ⇒≃norm (or sup norm) is
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Definition

A subset A of a metric space (X , d) is bounded if there exists M > 0 such that

d(x , y) < M for all x , y → A.
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Definition

Let (X , d) be a metric space. We define the open ball centred at a point x0 → X of

radius r > 0 as

Br (x0) := {x → X : d(x , x0) < r}.

Example

In R with the usual norm (absolute value), open balls are symmetric open intervals,

i.e.
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Example: Open ball in R2
with di!erent metrics

x1

x2

(r , 0)

(0, r)

(a) 1-norm (taxicab metric)

x1

x2

(r , 0)

(0, r)

(b) 2-norm (Euclidean metric)

x1

x2

(r , 0)

(0, r)

(c) →-norm

Figure: Br (0) for di!erent metrics
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