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Last time

Looked at open and closed sets.

Discussed sequences, which includes Cauchy sequences and subsequences:

e Convergent sequence: x, — x < Ve > 03 n. € N s.t. d(x,,x) < e forall n> n,

Cauchy sequence: Ve > 0 3n, € N s.t. d(xp, xm) < € for all n,m > n,

Proved that a convergent sequence is Cauchy

Discussed complete metric spaces, where all Cauchy sequences converge (like R
. m
with the usual metric, absolute value)

Proved that a sequence converges to x if and only if all subsequences converge to
X

4
3 Statistical Sciences
& UNIVERSITY OF TORONTO

July 15, 2025 2/23



Outline for today

e Continuity
® Equivalent metrics

® Density and separability
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Continuity

Definition

Let (X, dx) and (Y, dy) be metric spaces, let xo € X, and let f : X — Y. f is
continuous at xp if for every sequence (xp)nen in X that converges to xp, we have

limp—00 f(xn) = f(x0)-

We say that f is continuous if it is continuous at every point in X.
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Let (X,dx) and (Y, dy) be metric spaces, let xo € X, and let f : X — Y. The
following are equivalent:

(i) f is continuous at xp
(ii) for all e > 0, there exists & > 0 such that dy(f(x), f(x0))) < € for all x € X with
dx(x,x0) < 9
(iii) for each € > 0, there is § > 0 such that Bs(xp) C f~1(B.(f(x0)))
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(i) f is continuous at xg

(ii) for all € > 0, there exists 6 > 0 such that dy(f(x), f(x))) < € for all x € X with
dx(x,x0) < 9

(iii) for each € > 0, there is § > 0 such that Bs(xo) C f~}(B(f(x0)))

Proof. (i) = (ii)
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Corollary

Let (X, dx) and (Y, dy) be metric spaces and let ¥ : X — Y. The following are
equivalent:

(i) f is continuous
(i) if U C Y is open, then f~1(U) is open & shudod wey & defme  cwotineih
(i) if F C Y is closed, then f~1(F) is closed fo e goorel spasc.
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We need the following results about sets and functions:
Let X and Y besetsand f: X = Y. Let A,BC Y. Then

®ACB = f 1A CFYB)
@ (Y \A)=X\f"(A)

Proof. Let (X, dx) and (Y, dy) be metric spaces and let f : X — Y.
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Definition
Let (X, dx) and (Y, dy) be metric spaces and let £ : X — Y.
® f is uniformly continuous if for all € > 0, there exists > 0 such that for every
x1,x2 € X with dx(x1,x2) < 0, we have dy(f(x1),f(x2))) <€

® f is Lipschitz continuous if there exists a K > 0 such that for every x;,x € X we
have dy (f(x1),f(x2))) < Kdx(x1, x2)

Let (X, dx) and (Y, dy) be metric spaces and let f : X — Y.

f is Lipschitz continuous = f is uniformly continuous = f is continuous

Proof is one of your exercises.
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Contraction Mapping Theorem

Definition
Let (X, d) be a metric space and let f : X — X. We say that x* € X is a fixed point
of £ if F(x*) = x*.

Definition
Let (X, d etric space and let f : X — X. f is a contraction if there exists a
constanf_k € [0,1) such that for all x,y € X, d(f(x),f(y))) < kd(x,y).< Awz)
Observe that a function is a contraction if and only if it is Lipschitz continuous with
constant K < 1.

\,

Theorem (Contraction Mapping Theorem)

Suppose that f : X — X is a contraction and the metric space X is complete. Then f
has a unique fixed point x*. eray  Conddy jpre cony
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Let f: [—%, %] — [—% %] be defined by the mapping x — x2. Assume we use the
standard Euclidean metric, d(x,y) = |[x — y|. f has a unique fixed point because

(o2t ] = (nd ezl @ (-
%
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Equivalent metrics

Definition (Equivalent metrics)

Two metrics di and d» on a set X are equivalent if the identity maps from (X, d;) to
(X, dz) and from (X, d») to (X, d1) are continuous.

Two metrics dq, d» on a set X are equivalent if and only if they have the same open
sets or the same closed sets.
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Definition
Two metrics di and d, on a set X are strongly equivalent if for every x,y € X, there

exists constants & > 0 and 8 > 0 such

O‘dl(xvy) < d2(X7y) < Bdl(xay)‘

If two metrics are strongly equivalent the@they are equivalent. The proof of this is one

of the exercises.
di,de are  saM< u.pfz cwustod  duofor
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We show that the Euclidean distance (induced by 2-norm) and the metric induced by
the oo-norm are equivalent on R”.

I N ?@W’%
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Can you think of an example that we've seen of a metric that isn't equivalent to the
= Euclidean metric?

Statistical Sciences
¥ UNIVERSITY OF TORONTO

July 15, 2025 17/23



Density

Definition

e ot .

Let (X, d) be a metric space. A subset A C X is called dense if A= X.

A = { xeX ! Y50
From fhes

Pe )14 <& }

N CX 5 duge
Why are dense sets important?

xeX , Y520, Be A g
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Examples
L (R, [-])

@\ > Aae 0 [P

2. Let X be a set and define d: X x X — R by

0, x=y,

The om(7 dewer s in K05 X M slf
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Definition

A metric space (X, d) is separable if it contains a countable dense subset.
i ASNBS SN

Example:
@ c \B Thes @ RN
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Define loo = {(Xn)nen : Xn € R, sup,cy [Xa| < 00}, the space of bounded real valued
sequences. Endow /., with a metric induced by the supremum norm, namely
d((xn)nens (Yn)neN) = suppen |Xn — ¥nl. Then {« is not separable with respect to the
topology induced by this metric.

Note: this proof relies on content from the cardinality section. Specifically, Cantor's
theorem gives us that |A| < |P(A)| for any set A.
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Proof continued.
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