Module 5: Metric spaces III Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 15, 2025

July 15, 2025

Last time

Looked at open and closed sets.

Discussed sequences, which includes Cauchy sequences and subsequences:

- Convergent sequence: $x_n \to x \Leftrightarrow \forall \epsilon > 0 \; \exists \; n_\epsilon \in \mathbb{N} \; \text{s.t.} \; \; d(x_n,x) < \epsilon \; \text{for all} \; n \geq n_\epsilon$
- Cauchy sequence: $\forall \epsilon > 0 \; \exists \; n_{\epsilon} \in \mathbb{N} \; \text{s.t.} \; d(x_n, x_m) < \epsilon \; \text{for all} \; n, m \geq n_{\epsilon}$
- Proved that a convergent sequence is Cauchy
- Discussed complete metric spaces, where all Cauchy sequences converge (like $\mathbb R$ with the usual metric, absolute value)
- Proved that a sequence converges to x if and only if all subsequences converge to x

July 15, 2025

Outline for today

- Continuity
- Equivalent metrics
- Density and separability

Continuity

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces, let $x_0 \in X$, and let $f: X \to Y$. f is continuous at x_0 if for every sequence $(x_n)_{n \in \mathbb{N}}$ in X that converges to x_0 , we have $\lim_{n \to \infty} f(x_n) = f(x_0)$.

We say that f is continuous if it is continuous at every point in X.

Theorem

Let (X, d_X) and (Y, d_Y) be metric spaces, let $x_0 \in X$, and let $f: X \to Y$. The following are equivalent:

- (i) f is continuous at x_0
- (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \epsilon$ for all $x \in X$ with $d_X(x, x_0) < \delta$
- (iii) for each $\epsilon > 0$, there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$

(i) f is continuous at x_0

(ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \epsilon$ for all $x \in X$ with $d_X(x, x_0) < \delta$

(iii) for each $\epsilon > 0$, there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$

Proof. (i)
$$\Rightarrow$$
 (ii)

Then
$$\forall n$$
, by teles $\delta = \frac{1}{n}$, $\forall x \in \mathbb{Z}$, $d_{x}(x,x_{0}) < \delta$ and $d_{y}(f(x_{0}),f(x_{0})) \geq \epsilon$.

Then $\forall n$, by teles $\delta = \frac{1}{n}$, $\forall x \in \mathbb{Z}$, $d_{x}(x_{0},x_{0}) < \frac{1}{n}$ and $d_{y}(f(x_{0}),f(x_{0})) \geq \epsilon$.

Twee of my (i) we must have flow) - flow). (Cantradret

This is a contradiction since we also have dy (fex), fexo) 25 for m.

(ii) \Rightarrow (iii) (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (iv) TE BL(TO) fine B (fins) € \$500, 2800 (1.70 B) (50) inplus feare B (fear) € \$70,2000 (1. B)(50) € f (BE(100)) $(iii) \Rightarrow (i)$ x ∈ f (Br(fm)) Lot xn -> xo. By (1111), \$ 870, 3870 s.f. Bs (20) C f-1 (BE (fres)) Sur the of 3 mg st. MZ Mg imples The Bo(To) (f'(Be(fres)) therefore f (m) & BE (forw) i. dy (form), form) < E. Thus, we were able to show "EDO, I'ME s.f. MZME inplus dy (form), form) < E. Thense, for) - + for)

7 / 23

July 15, 2025

Corollary

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$. The following are equivalent:

- (i) f is continuous
- (ii) if $U \subseteq Y$ is open, then $f^{-1}(U)$ is open \leftarrow standard may to define continuity

 (iii) if $F \subseteq Y$ is closed, then $f^{-1}(F)$ is closed for a more general space.
- (iii) if $F \subseteq Y$ is closed, then $f^{-1}(F)$ is closed

July 15, 2025

We need the following results about sets and functions:

Let X and Y be sets and $f: X \to Y$. Let $A, B \subseteq Y$. Then

Proof. Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$.

(i)
$$\Rightarrow$$
 (ii): Let \mathcal{T} C? he open. We want to show $f^{-1}(\sigma)$ is open.

Lut
$$x \in f^1(U)$$
. Some for GT and U is open,

Since this is drue for any $x \in f'(v)$, f'(v) must be open.

(ii)
$$\Rightarrow$$
 (i) $\forall_{X} \in X$, $\forall_{\Sigma} \neq 0$, $\underline{\beta_{\Sigma}} (f(p))$ is an open set in Y .

Con apply all

By (ii) $\forall_{X} \in X$, $\forall_{\Sigma} \neq 0$, $\underline{\beta_{\Sigma}} (f(p))$ is an open set in X .

(ii)
$$\Rightarrow$$
 (iii)
Let $F \subseteq Y$ he closed.
Since F^{\subseteq} is open, $f^{-1}(F^{\subseteq}) = X \setminus f^{-1}(F)$ is open by (1).
Thus, $f^{-1}(F)$ must be closed.

(iii)
$$\Rightarrow$$
 (ii) Let $U \subset Y$ be open.
Since U^{C} is closed, $f^{-1}(U^{C}) = X \setminus f^{-1}(U)$ is closed by (iii).
Thus, $f^{-1}(U)$ must be open.

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$.

- f is uniformly continuous if for all $\epsilon > 0$, there exists $\delta > 0$ such that for every $x_1, x_2 \in X$ with $d_X(x_1, x_2) < \delta$, we have $d_Y(f(x_1), f(x_2)) < \epsilon$
- f is Lipschitz continuous if there exists a $K \ge 0$ such that for every $x_1, x_2 \in X$ we have $d_Y(f(x_1), f(x_2))) \le Kd_X(x_1, x_2)$

Proposition

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$.

f is Lipschitz continuous \Rightarrow f is uniformly continuous \Rightarrow f is continuous

Proof is one of your exercises.

Contraction Mapping Theorem

Definition

Let (X, d) be a metric space and let $f: X \to X$. We say that $x^* \in X$ is a *fixed point* of f if $f(x^*) = x^*$.

Definition

Let (X,d) be a metric space and let $f: X \to X$. f is a contraction if there exists a constant $k \in [0,1)$ such that for all $x,y \in X$, $d(f(x),f(y)) \le kd(x,y)$.

Observe that a function is a contraction if and only if it is Lipschitz continuous with constant K < 1.

Theorem (Contraction Mapping Theorem)

Suppose that $f: X \to X$ is a contraction and the metric space X is complete. Then f has a unique fixed point x^* .

July 15, 2025 13 / 23

Let $f: \left[-\frac{1}{3}, \frac{1}{3}\right] \to \left[-\frac{1}{3}, \frac{1}{3}\right]$ be defined by the mapping $x \mapsto x^2$. Assume we use the standard Euclidean metric, d(x,y) = |x-y|. f has a unique fixed point because

$$|x^2-3^2| = |x-2| \frac{|x+3|}{(x+3)} \le \frac{2}{3} \frac{3}{3} (x-2)$$

Thus, we can apply Contractor mapping theorem

July 15, 2025

Equivalent metrics

Definition (Equivalent metrics)

Two metrics d_1 and d_2 on a set X are *equivalent* if the identity maps from (X, d_1) to (X, d_2) and from (X, d_2) to (X, d_1) are continuous.

Proposition

Two metrics d_1 , d_2 on a set X are equivalent if and only if they have the same open sets or the same closed sets.

July 15, 2025

Definition

Two metrics d_1 and d_2 on a set X are <u>strongly equivalent</u> if for every $x, y \in X$, there exists constants $\alpha > 0$ and $\beta > 0$ such

$$\alpha d_1(x,y) \leq d_2(x,y) \leq \beta d_1(x,y).$$

If two metrics are strongly equivalent then they are equivalent. The proof of this is one of the exercises.

di, de are same upto constat factor

July 15, 2025

Example

We show that the Euclidean distance (induced by 2-norm) and the metric induced by the ∞ -norm are equivalent on \mathbb{R}^n .

$$||\chi - 2h|_{\infty} = ||\chi_{0} - 2h|| \le \int_{0}^{\infty} |(\chi_{0} - 2h)^{2}| = ||\chi_{0} - 2h||_{2}$$

$$||\chi_{0} - 2h||_{2} = \int_{0}^{\infty} |(\chi_{0} - 2h)|^{2} \le \int_{0}^{\infty} ||\chi_{0} - 2h||_{2} = \int_{0}^{\infty} ||\chi_{0} - 2h||_{2}$$

Can you think of an example that we've seen of a metric that isn't equivalent to the

Density

Definition

Let (X, d) be a metric space. A subset $A \subseteq X$ is called *dense* if $\overline{A} = X$.

Reach that
$$A = \{x \in X : \forall \xi > 0, \beta_{\xi}(x) \cap A \neq \emptyset\}$$
.

From this
$$A \subset X \text{ is dense.} \iff x \in X, \forall \xi > 0, \beta_{\xi}(x) \cap A \neq \emptyset$$

Why are dense sets important?

Examples

1. $(\mathbb{R}, |\cdot|)$

Q is dure in P.

2. Let X be a set and define $d: X \times X \to \mathbb{R}$ by

$$d(x,y) = \begin{cases} 0, & x = y, \\ 1, & x \neq y. \end{cases}$$

The only dense set in X is X H self

(everage)

Definition

A metric space (X, d) is separable if it contains a countable dense subset.

Example:

Example

Define $\ell_{\infty}=\{(x_n)_{n\in\mathbb{N}}:x_n\in\mathbb{R},\ \sup_{n\in\mathbb{N}}|x_n|<\infty\}$, the space of bounded real valued sequences. Endow ℓ_{∞} with a metric induced by the supremum norm, namely $d((x_n)_{n\in\mathbb{N}},(y_n)_{n\in\mathbb{N}})=\sup_{n\in\mathbb{N}}|x_n-y_n|$. Then ℓ_{∞} is **not separable** with respect to the topology induced by this metric.

Note: this proof relies on content from the cardinality section. Specifically, Cantor's theorem gives us that $|A| < |\mathcal{P}(A)|$ for any set A.

Proof continued.

Define a new sequence
$$(3n)_{n \in \mathbb{N}}$$
 by

$$y_{q} = \begin{cases}
0 & \text{if } |\chi_{n}^{n}| > |\chi_{n}^{n}| > |\chi_{n}^{n}| > |\chi_{n}^{n}| < |\chi_{n$$

By taky O(E<1, then BE((34)nom) 15 = \$ Sime 5 is dure, this is a contradiction. (proof 2) For any ICN, dufine e = (en) non elos ho $\ell_{y}^{I} = \begin{cases} 1 & \text{if } m \in I \\ 0 & \text{if } m \notin I. \end{cases}$ Note that if I t I, Im s.t. | en - en |= 1. Therefor, $d(e^{I}, e^{J}) = 1$ of $I \neq J$. Thus, if $\xi \in (0, \pm)$, $B_{\varepsilon}(e^{\tau}) \wedge B_{\varepsilon}(e^{J}) = \emptyset$ if I+J. So, all BE(et) are disjoint. Lit S Clos be a dense subset. Then BE (et) 15 \$ \$ by deduitron But sum all Belet) are disjout 131 Z [{ {I: ICN}}] (the number of BE(eZ) = P(N) > |N|

Therefore 5 cannot be countable.

References

Jiří Lebl (2022). *Basic Analysis I.* Vol. 1. Introduction to Real Analysis. https://www.jirka.org/ra/realanal.pdf

Runde, Volker (2005). *A Taste of Topology*. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

