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Last time

Looked at open and closed sets.

Discussed sequences, which includes Cauchy sequences and subsequences:

• Convergent sequence: xn → x ↑ ↓ω > 0 ↔ nω ↗ N s.t. d(xn, x) < ω for all n ↘ nω

• Cauchy sequence: ↓ω > 0 ↔ nω ↗ N s.t. d(xn, xm) < ω for all n,m ↘ nω

• Proved that a convergent sequence is Cauchy

• Discussed complete metric spaces, where all Cauchy sequences converge (like R
with the usual metric, absolute value)

• Proved that a sequence converges to x if and only if all subsequences converge to
x
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Outline for today

• Continuity

• Equivalent metrics

• Density and separability
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Continuity

Definition

Let (X , dX ) and (Y , dY ) be metric spaces, let x0 ↗ X , and let f : X → Y . f is
continuous at x0 if for every sequence (xn)n→N in X that converges to x0, we have
limn↑↓ f (xn) = f (x0).

We say that f is continuous if it is continuous at every point in X .
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Theorem

Let (X , dX ) and (Y , dY ) be metric spaces, let x0 ↗ X , and let f : X → Y . The
following are equivalent:

(i) f is continuous at x0

(ii) for all ω > 0, there exists ε > 0 such that dY (f (x), f (x0))) < ω for all x ↗ X with
dX (x , x0) < ε

(iii) for each ω > 0, there is ε > 0 such that Bε(x0) ≃ f ↔1(Bω(f (x0)))
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(i) f is continuous at x0
(ii) for all ω > 0, there exists ε > 0 such that dY (f (x), f (x0))) < ω for all x ↗ X with
dX (x , x0) < ε
(iii) for each ω > 0, there is ε > 0 such that Bω(x0) ≃ f →1(Bε(f (x0)))

Proof. (i) ⇐ (ii)

July 15, 2025 6 / 23

Smgpnosei is false .

ョ
E 20

, F,
ョ
x st . dycx, 40, co al dy ( foa ) , fees )Ʃ E .

感感点case
'

cinetylfhe
.) → @-ntueriti

This is a contradictionsince wealso havedy(fal ,fxo1 l 2E fortn .



(ii) ⇐ (iii)

(iii) ⇐ (i)
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Corollary

Let (X , dX ) and (Y , dY ) be metric spaces and let f : X → Y . The following are
equivalent:

(i) f is continuous

(ii) if U ≃ Y is open, then f ↔1(U) is open

(iii) if F ≃ Y is closed, then f ↔1(F ) is closed
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We need the following results about sets and functions:
Let X and Y be sets and f : X → Y . Let A,B ≃ Y . Then

1 A ≃ B =⇐ f ↔1(A) ≃ f ↔1(B)

2 f ↔1(Y \ A) = X \ f ↔1(A)

Proof. Let (X , dX ) and (Y , dY ) be metric spaces and let f : X → Y .
(i) ⇐ (ii):
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(ii) ⇐ (i)
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(ii) ⇐ (iii)

(iii) ⇐ (ii)
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Definition

Let (X , dX ) and (Y , dY ) be metric spaces and let f : X → Y .

• f is uniformly continuous if for all ω > 0, there exists ε > 0 such that for every
x1, x2 ↗ X with dX (x1, x2) < ε, we have dY (f (x1), f (x2))) < ω

• f is Lipschitz continuous if there exists a K > 0 such that for every x1, x2 ↗ X we
have dY (f (x1), f (x2))) ⇒ KdX (x1, x2)

Proposition

Let (X , dX ) and (Y , dY ) be metric spaces and let f : X → Y .

f is Lipschitz continuous ⇐ f is uniformly continuous ⇐ f is continuous

Proof is one of your exercises.
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Contraction Mapping Theorem

Definition

Let (X , d) be a metric space and let f : X → X . We say that x↗ ↗ X is a fixed point
of f if f (x↗) = x↗.

Definition

Let (X , d) be a metric space and let f : X → X . f is a contraction if there exists a
constant k ↗ [0, 1) such that for all x , y ↗ X , d(f (x), f (y))) ⇒ kd(x , y).

Observe that a function is a contraction if and only if it is Lipschitz continuous with
constant K < 1.

Theorem (Contraction Mapping Theorem)

Suppose that f : X → X is a contraction and the metric space X is complete. Then f
has a unique fixed point x↗.
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Example

Let f :
[
⇑1

3 ,
1
3

]
→

[
⇑1

3 ,
1
3

]
be defined by the mapping x ⇓→ x2. Assume we use the

standard Euclidean metric, d(x , y) = |x ⇑ y |. f has a unique fixed point because
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Equivalent metrics

Definition (Equivalent metrics)

Two metrics d1 and d2 on a set X are equivalent if the identity maps from (X , d1) to
(X , d2) and from (X , d2) to (X , d1) are continuous.

Proposition

Two metrics d1, d2 on a set X are equivalent if and only if they have the same open
sets or the same closed sets.
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Definition
Two metrics d1 and d2 on a set X are strongly equivalent if for every x , y ↗ X , there
exists constants ϑ > 0 and ϖ > 0 such

ϑd1(x , y) ⇒ d2(x , y) ⇒ ϖd1(x , y).

If two metrics are strongly equivalent then they are equivalent. The proof of this is one
of the exercises.
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Example

We show that the Euclidean distance (induced by 2-norm) and the metric induced by
the ⇔-norm are equivalent on Rn.

Can you think of an example that we’ve seen of a metric that isn’t equivalent to the
Euclidean metric?
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Density

Definition

Let (X , d) be a metric space. A subset A ≃ X is called dense if A = X .

Why are dense sets important?
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Examples

1. (R, | · |)

2. Let X be a set and define d : X ↖ X → R by

d(x , y) =

{
0, x = y ,

1, x ↙= y .
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Definition

A metric space (X , d) is separable if it contains a countable dense subset.

Example:

July 15, 2025 20 / 23

ー mu

CIR ThusR is a

dense aul countoble Eepavablemetrire
space

.



Example

Define ϱ↓ = {(xn)n→N : xn ↗ R, supn→N |xn| < ⇔}, the space of bounded real valued
sequences. Endow ϱ↓ with a metric induced by the supremum norm, namely
d((xn)n→N, (yn)n→N) = supn→N |xn ⇑ yn|. Then ϱ↓ is not separable with respect to the
topology induced by this metric.

Note: this proof relies on content from the cardinality section. Specifically, Cantor’s
theorem gives us that |A| < |P(A)| for any set A.

Proof.
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Proof continued.
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