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e Compactness

® Extra properties of R
® Right- and left-continuity

® Lim sup and lim inf
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Last time

Definition

Let (X, d) be a metric space. A subset A C X is called dense if A= X.

Definition
A metric space (X, d) is separable if it contains a countable dense subset.

R is separable because QQ is dense in R J
Q" C R ([ T*P"""“'(‘
A‘-M/-L
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Define loo = {(Xn)nen : Xn € R, sup,cy [Xa| < 00}, the space of bounded real valued
sequences. Endow /., with a metric induced by the supremum norm, namely
d((xn)nens (Yn)neN) = suppen |Xn — ¥nl. Then {« is not separable with respect to the
topology induced by this metric.

Note: this proof relies on content from the cardinality section. Specifically, Cantor's
theorem gives us that |A| < |P(A)| for any set A.

Proof-
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Proof continued.
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Compactness

Definition
Let (X, d) be a metric space and K C X.
A collection {U;};c; of open sets is called open cover of K if K C U;¢;U;.

The set K is called compact if for all open covers {U;};c there exists @ubcover,
meaning there exists an n € N and {U,..., Uy} € {U;}ic/ such that K C U7, U;.
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Let S C X where (X, d) is a metric space. If S is finite, then it is compact.

—
Proof. |t ( U x}

Thew S < U Ux
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(0,1) is not compact. —) (e wed & fud wn open sy |

WRese T fuh coves CanneT oo (O,])
Proof.

Lt Uas (=, 1-%) , mz2

o

Theo, , U U = (_O,l) . =) ‘[D—\ghzz SS o wh Opev (ovhy
o o}‘ (o,1).

funpah_ (0/\) s Co‘ryf-c‘l" '[L..\,l/ r}’lscw_ T« e wacdll‘(-]/' O’f (O,l)

~

) 7, - 7 LN, (— &M
( Um, , Um,- ym/‘} o L

,”‘“" / (.0/ ,--) c U Um = 1—2—”& - MA_ ) (/ /"h,) ) (WM'/M“

Statistical Sciences )
UNIVERSITY OF TORONTO >

July 17, 2025 8/28



Let (X, d) be a metric space and take a non-empty subset K C X. The following
holds:

@ If X is compact and K is closed, then K is compact (i.e. closed subsets of
compact sets are compact).

@® If K is compact, then K is closed. — (0,1) 5 .t CWP__J.

S Statistical Sciences
UNIVERSITY OF TORONTO

July 17, 2025 9/28



Proof. (1) If X is compact and K C X is closed, then K is compact
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(2) K € X compact = K is closed.
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Arbitrary compact metric spaces have some nice properties in general as the next
proposition shows.

A compact metric space (X, d) is complete and separable. J

Also, just as we had a sequential characterization of the closure of a set in metric
spaces, we similarly have a sequential characterization of compactness.

Let (X, d) be a metric space. Then K C X is compact with respect to the metric
induced by d if and only if every sequence in K admits a subsequence converging to
R8T

some point in K.
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Compactness on R”

Theorem (Heine-Borel Theorem)

Let K CR". Then K is compact with respect to the topology induced by the
Euclidean distance if and only if it is closed and bounded.

‘/3 (0/\) 5 wof Cywpuo‘f" l,\/lf”1 EOIIJ P (w—»},qj“
A corollary of the last two theorems is the Bolzano-Weierstrass theorem.

Corollary (Bolzano-Weierstrass)
Any bounded sequence in R" has a convergent subsequence.
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Proposition

Let (X, dx) and (Y, dy) be metric spaces. Suppose K C X is compact and let
f: K — Y be continuous. Then f(K) is compact.

Note: this is a generalization of the Extreme Value Theorem to metric spaces.
£ 0] B contines . F g min el
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Extra properties of R J
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Right and left continuous

Recall: f: R — R is continuous at xg € R if for all € > 0 there exists a § > 0 such that
[x0 — y| < & implies |f(x0) — f(y)| <.

Definition
Let f: R = R.

® f is left continuous at xg € R if for all € > 0 there exists a § > 0, such
|f(x0) — f(x)| < € whenever xg — § < x < xp.

® f is right continuous at xp € R if for all € > 0 there exists a § > 0, such
|f(x0) — f(x)| < € whenever xp < x < xp + 9.

We say that f is left continuous if it is left continuous at all points in the domain, and

similar for right continuous.
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Proposition

A function f: R — R is continuous if and only if it is left and right continuous.

Proof-
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Bounded sequences and monotone convergence

Definition

Let (xn)nen be a sequence in R. We call (x,)nen bounded if there exists an M > 0
such that |x,| < M for all n € N.

Theorem (Monotone convergence theorem)

(i) Suppose (xn)nen is an increasing sequence, i.e. x, < xp+1 for all n € N, and that
it is_bounded (abovmge—quence converges. Furthermore,
IimmN Xn, Where sup,cy X := sup{x, : n &€ N}.

(ii) Suppose (xp)neN Is a decreasing sequence, i.e. xp > xp11 for all n € N, which is
bounded (below). Then the sequence converges and
limp—00 Xn = Infpen X, := inf{x, : n € N}
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Convention: supA = oo if A C R is not bounded above and inf A= —oc if A is not
bounded below.

If AC B C R is non-empty, then inf A < supA, supA <supB, and inf A > inf B.

The proof of this follows from the definition of greatest lower and least upper bound.
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Definition
Let (xn)nen be a sequence in R. We define the limit superior of (xp)nen as

. . £ & et l“-v(v.w_/l
limsup x, := lim b ;’7”L
n—o00 n—o0 ole heeseS o M ‘\"CV"‘-4-5

Similarly we define the limit inferior of (xn)nen as
[ fiiu—m 1"‘40‘-(74/( |-7ML
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If the sequence (xp)nen is not bounded above, then limsup,_, . x, = co. Similarly, if
the sequence (x,)nen is not bounded below, then liminf,_,o x, = —o0.
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Let (xn)nen be a sequence in R.

® The sequence of suprema, s, = sup,~, Xk, is decreasing and the sequence of
infima, i, = infx>, Xk, is increasing.

® The limit superior and the limit inferior of a bounded sequence always exist and
are finite.

Proof.
Lyt (e
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Let (xn)nen be a sequence in R. Then the sequence converges to x € R if and only if
limsup,_, o Xn = X = liminf o0 Xp.

Proof in notes.
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We can extend this easily to a sequence of functions f,: X — R as follows:

Define f = limsup,_,., fn to be the function defined pointwise by

f(x) = limsup,_,(fa(x)) and similar for the Timit inferior.
B s Sh A AP

There also exists a set theoretic version in terms of unions and intersections which you
will encounter in probability.
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