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Outline

Today:

® \/ector spaces and subspaces
® |inear independence and bases

® |inear maps, null space, range
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Vector spaces & subspaces J
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Definition ‘
We call V' a vector space if the following hold:

(A) Commutativity in addition: u+v =v +u for all u,v € V

(B) Associativity in addition: u+ (v+w) = (u+v) +w for all u,v,w € V

(C) _Existence of a neutral element, addition: There exists a vector 0 such that for any
veV,0+v=v

(D) MFor every v € V, there exists another vector, which we denote
—v, such that v + (—v) = 0.

a)

E) Existence of a neutral element, multiplication: For any v € V ()X v =v

()
(F) ASSOCIat/VIty in multiplication: Let o, 5 € F. For any v € V, (af)v = a(fv)
(G)
(H)

G
H

Let a € Fu,v € V. a(u+v) = au+ av. nartly  condtn
Let a, B € F,v e V. (a+5)v:av+ﬁv.>
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Elements of the vector space are called vectors.
Most often we will assume F = C or R.

The following are vector spaces:

o RN
o " Acpp
= e Q0
¢ C(R;R), continuous functions from R to R f, ¢ cclhr)= 345 € Cle)
_ , Af c (e
® M, «m, matrices of size n x m
e P, (polynomials of degree n, p(x) = ap + aix + ... + anx").
Cpﬁl7w~l )"( CP“‘7W-'1J‘J) = P"(?‘qtk-ra}
ﬁl (_pol7\t.u‘qlJ = CP"%V\.DI‘W{‘-/ )
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For every v € V, Ov = 0.

Jiwe Oz 019 h, (H) D-are (610) NG 0t 0
—~ ]

seelor

97 (—D)/ Fhoe  cprsts Mlvh‘ifvt vy fc of 0V

Se, 0> O-a~ (-O-'V‘? = (0w~ 0~f\/\) + (-0-v)

B)E) 0w+ [0+ o))
Ty () 0

¢ - - (o)
. VO oo,
%gtﬁ;;s\tfl;:dklssg?g; TORONTO Ck} @ 0 —t 0- W~ @ 0 ‘ (V\
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For every v € V, we have —v = (—1) x v.

W'c y\«‘/( 't:’ Tl'\r}\v (\/\’f (’t) f\/\ - O OCGI/ 54.7 an G‘\/

§.‘\-.c: 0= l'+ C"() CH)_ o0- 1= {4/\ C,{_J.fl/\
/h’ ~— C)Rb,cm,{-w:m

=0 by f’kp\vr..) e o=

S.D= At 1) o
U st = £ bl sodlzs

B c0)
7 / —U~ =z =Wt 0= —ant e H)WN= H)V |
”
@
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A subset U of V is called a subspace of of V if U is also a vector space (using the
same addition and scalar multiplication as on V).

A subset U of V is a subspace of V if and only if U satisfies the following three
conditions: —
a B (e) el G U
@0cU 0 mV b =}
® Closed under addition: u,v € U impliesu+v € U
© Closed under scalar multiplication: @ € F and u € U implies au € U
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Proof. (=) @/@ bhols daedl , e O 7 o ecthw gpace.
Veud € shaw Oy € U
o wne U. Thnm EH)}w eV,
T Wt - u U, DM UG U )U €U
7

(<) O'm(7 ¢bu, CD) y Mo st oF  addifae Svarse

FHY Cny \AEU—/ wre e 2 $L|W ﬂ“ -(}-l"S\Lf‘«‘L 05’ a/{alﬁl:‘w fvevle

B7 \/\‘(wt\} W év, 2 W= =) W €& \_/
07 @/ (H) wn € 17 Tkg tre kRna —WU ebf_'

7
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Linear (in)dependence and bases J
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Linear combinations

Definition

A linear combination of vectors vq, ..., v, of vectors in V is a vector of the form

n
a1V1 + ... + apv, = E (e A%
k=1

where ag, ...,a, € F.
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Span

<IV\J/'-~ /(\/\'—\>

Definition
The set of all linear combinations/of a list of vectors vy, ...,v, in V is called the span

of vi,...,v,, denoted span{vy,...,v,}. In other words,
w ~—

span{vi,...,vp} = {aivi + ... + amVvy : 1, ..., € F}

The span of the empty list is defined to be {0}.
g S
V.

TS DS B
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Basis

A system of vectors vy, ..., v, is called a basis (for the vector space V ) if any vector

v € V admits a unique représentation as a linear combination
AT

n
V=qV]+...+apv, = Zakvk. e &, D
k=1

® For F", ¢ =(1,0,...,0), & =(0,1,0,...,0), ..., e, =(0,...,0,1) is a basis

® The monomials 1,x, x2,...,x" form a basis for P,
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T4 v W e Brendy depaadeT

Linear independence .,
2 0;20 1t D dan =0

=1

AW = — ?gb-"(f"’}‘ St duto
Definition
A system of vectors vi,...,v, in V is called linearly independent if Y= — R .;_‘. (\/\;
Rl Ko

/[/\.: Sy e (n‘lmv

Combivefrn, ©f
. . . 4/"5 exepl fn,
implies a; =0 forall i =1,...,n. / .
— -
Otherwise, we call the system linearly dependent. )

Linear combinations ayvi + ... + apv, such that a, = 0 for every k are called trivial.

&

7 Statistical Sciences

& UNIVERSITY OF TORONTO
July 18, 2025 14 /36



Spanning set

Definition
A system of vectors vi,...,v, in V is called spanning if any vector in V can be
written as a linear combination of vq,...,v,. In other words,

V = span{vy,...,v,}.

Such a system is also often called generating or complete. The next proposition relates
spanning and linearly independent to a basis.
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Proposition

A system of vectors vi,...v, € V is g if and only if it is linearly independent and

spanning.

Proof. (é) f_m)at-v_ ’V\(, "/’V\-\, s o bkfrf .

'ﬁ‘{' m-ﬁfm; t: {Llel.‘/ v, }'V\,‘ are (u'«.cu.,‘7 »"\-/{‘pw'f.

L"_{’ i de v = O
§\~\ O - Z 0- /V\(: wt [AH 0 Y“pf<lw‘{&4 ‘v o Whis
‘ (&4l /

0-7 ﬁ'« u,v\f[;w.m;/ o7c fwyﬁ\ Wﬂm;-‘/l’-’/f-u\/ e Mus‘f C\ﬂx-« DZ.,‘:’DJVC-
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(¢) s'b—{}l')l’ I~ '\[ ~ < ’l/\(/"' , /[/\\1> oA /V\.)S Sl (1’\:@)/(7 ,lq/fff‘g[.
'ﬂ"' {u.%w; 1 i"/wu/ Wi hehess O»F (-‘new me«,ﬁf)‘w |,7 'l/‘l,"‘";WL,_

Lt T e - Z' (e

o\

/U'\e\«/ 21: (ala’(};)~4/\e =0

!

[}7 [ (e Smege il eac ) 0((" ﬁc'-’O = ’(\"’&L‘_
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Proposition

Let vi,...,v, € V be spanning. Then vy,...,v, contains a basis.

Sketch of proof.
Do Eo= {’"\} .

Ly v e m2, Fe M Es

I+ WM & Jwy P (F E, - i’V‘(/’V‘wa

T+ N € Spm Ezl ﬂmq [« f E}: E_;_.

L;— Vs & gpew €2, the [ E'b = B U El:'l/\?g

Lepetsy s precss e hae B,
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Definition

An F-vector space V is called finite dimensional if there exists a finite list of vectors
that span it, i.e. there exist n € N and vq,...,v, € V such that

V = span{vi,...,v,}. Otherwise, we call V infinite dimensional.

o F" M «n P, are examples of finite dimensional vector spaces
® The F-vector space P = {37 a;x' : n€N,q; € F,i =1,...,n} is infinite
dimensional.
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Every finite dimensional vector space has a basis.

This follows from the fact that every spanning set for a vector space contains a basis.

This can also be extended to infinite dimensional vector spaces, i.e. when we do not
assume that there exists a finite spanning set. However, this relies on the Axiom of
Choice and is beyond the scope of this course.
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Proposition

Every linearly independent list of vectors in a finite-dimensional vector space can be
extended to a basis of the vector space.

Proof. LA Iy, W he  Owewly  Acdptt A ecfors

Gt Eo- EU\,/ =) Mv\g_
L.t V= W b

/

Co L)u{i‘j D‘F V

T4 W& Spea Ea/ A E, = ELU('VH},
¥ wWoe v B, fhe E = Eo.

IZA p—w‘l s Lu"f Z‘b MP’I .
\A/'C C & fL\ﬂ\-" 7LLL1 Ew
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Dimension

Let vi,...,v, and ug,...,u,, be a basis for V. Then m = n. J

The proof is omitted,. It relies on the fact that the number of elements in linearly
independent systems are always less than or equal to the number of elements in
spanning systems.

Definition
Let V be a finite dimensional F-vector space. The number of elements in a basis of V

is called the dimension of V and is denoted dim(V).

By the previous definition, the notion of dimension is well-defined.
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Dimension

e dim(F")= oL

o dm(P,) = m+|

e dim{0} =
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Linear maps
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Linear Maps

Definition
A map from a vector space U to a vector space V is linear if

T(au+ Bv) =aT(u)+ ST(v) forany u,v E%’, a,BeF

Notation: L£(U, V) is the set of all linear maps from F-vector space U to F-vector
space V
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e Zeromap 0O U DV  Adu L Ou=0 v o wey.

L4
o ldentitymap Tf: V= V  dedek by Thw) = foy A EV.
W‘tc”wf{)hﬁ: b'{ Pol7r4a.4[q,|;_

e Differentiation [ - P (R) — P([P)
v J

L R
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Suppose uy, ..., u, is a basis for U and v1,...,v, is a basis for V. Then there exists a
unique linear map T : U — V such that Tu; =v; for j=1,...,n.

Proof in book.

Let S, T € L(U,V) and o € F. L(U, V) is a vector space with addition defined as the
suny’S + T and multiplication as the product o T.

The proaf follows from properties of linear maps and vector spaces. Note that the
additive igentity is the zero map.

{
(57 () € Sant Tam
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Let T € L(U,V). Then T(0)=0. & 0 ¢ &T

Proof. C\‘wc.f. 0= 01 0 ) [77 I“""’"/‘]’ “IFT)
T(o)= T(o+e) = T (o) Teo)
T(o)- 0/
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Null space and range

Definition
Let T : U — V be a linear transformation. We define the following important
subspaces: ker T

® Kernel or null space: null T={ue U: Tu=0}
® Range: range T ={v € V:3Ju€ Usuch thatv=Tu} gy <F T

The dimensions of these spaces are often called the following:
® Nullity: nullity(T) = dim(null(T)) = ol (ke ()
® Rank: rank(T) = dim(range(T)) = o (7T )
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Proposition
Let T: U — V. The null space of T is a subspace of U and the range of T is a
subspace of V.

Proof. (i) the null space of T is a subspace of U
&_) O € k‘tkT (s (.,[PO«'{7 P-rav-t-/t |77 I)N\A‘uu—; [-(hwv(. ;

h) Lo wn ekaT.
T]Mb\ Tv\- '[/V‘f’ 0.

l}

Thes, T (ww)s TurTwe < 0107 0. - ueng kaT
c) LA deF, aekel
- 01_0: O \'\dq/\ékch\

Thew TLD(Q/») = oL =
87 a) ~ C)/ we  concluda f7 !:\’YT DS Ser/)M-e_
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(i) the range of T is a subspace of V
L) O € IMT Gue. (0= 0
'L) L"+ {V\l /ML e ’I"’VT

’(\rvt,L ﬂw"*— {,yrc'f' U\[/ U, iff‘ rl/\l;TMt/ 4/‘11Tblz.

Tlt“ﬁ/ WY AV Todt Tu = TU/\((V‘;,) GIWT_
3) L4 dek are T

7w eu . ws Tu.

s odTu = T(dn) e s’

i Lf &< R
FURET S oo Thomfoe | e cnclik AT TT G w590 7
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Zero map from a vector space U to a vector space V:
® The null space is v

® The range is ( 0}

Differentiation map from P(R) to P(R):
® The null space is [ C all cohhs )

® The range is lP (_['\)_)
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Tu\ o/('!\/ muyl_y
WA~ taples T T

Definition (Injective and surjective)

Let T: U — V. T is injective if Tu = Tv implies u = v and T is surjective if
Y e V,Jue Usuchthatv="Tu, ie ifrangeT = V.

T € L(U,V) is injective if and only if null T = {0}.
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Proof. (=)  Suppere T rs evjeddone
LA are baT
Then, Torz 0= T0

ST

Jieen T o f‘\«;'\"o*r‘m/ an = 0/_ hel pmeas (r-eyT = (02 ’

(€) Gepen ko {05
Lt Tw v
T T (w=9~) = Tu-Tn =0,

x\\ K- N & k’:-u/T_
Iz O = I
Ciwe kv 17 it%/ e  tausT e G- & U _
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Theorem (Rank Nullity Theorem)

Let T : U — V be a linear transformation, where U and V are finite-dimensional
vector spaces. Then

rank T + nullity T = dim U.
Dk(‘v\ Tw{T % Aﬁ hw—( = a(\\.\ U

Proof in the lecture notes (pg. 35).

k4
3 Statistical Sciences
& UNIVERSITY OF TORONTO

July 18, 2025 35/36



References

Axler S. Linear Algebra Done Right. 3rd ed. Undergraduate Texts in Mathematics.
Springer, 2015. Available from:

https://link.springer.com/book/10.1007/978-3-319-11080-6

Treil S. Linear Algebra Done Wrong. 2017. Available from:
https://www.math.brown.edu/streil /papers/LADW /LADW.html

k4
3 Statistical Sciences
& UNIVERSITY OF TORONTO

July 18, 2025 36/36



