Module 8: Linear Algebra II Operational math bootcamp Ichiro Hashimoto University of Toronto July 22, 2025 July 22, 2025 ## **Outline** #### Last time: - Vector spaces and subspaces - Linear independence and bases - Linear maps, null space, range ## Today: - Inverses of linear maps - Matrices as linear maps - Determinants - Inner product spaces ## Recall #### Theorem Suppose $\mathbf{u}_1, \dots, \mathbf{u}_n$ is a basis for U and $\mathbf{v}_1, \dots, \mathbf{v}_n$ is a basis for V. Then there exists a unique linear map $T: U \to V$ such that $T\mathbf{u}_j = \mathbf{v}_j$ for $j = 1, \dots, n$. ## Definition (Injective and surjective) Let $T: U \to V$. T is *injective* if $T\mathbf{u} = T\mathbf{v}$ implies $\mathbf{u} = \mathbf{v}$, if and only if null $T = \{\mathbf{0}\}$. T is *surjective* if $\forall \mathbf{v} \in V$, $\exists \mathbf{u} \in U$ such that $\mathbf{v} = T\mathbf{u}$, i.e. if range T = V. ## Theorem (Rank Nullity Theorem) Let $T:U\to V$ be a linear transformation, where U and V are finite-dimensional vector spaces. Then rank T + nullity T = dim U. July 22, 2025 ## Definition (Product of linear maps) Let $S \in \mathcal{L}(U, V)$ and $T \in \mathcal{L}(V, W)$. We define the product $ST \in \mathcal{L}(U, W)$ for $\mathbf{u} \in U$ as $ST(\mathbf{u}) = S(T(\mathbf{u}))$. #### Definition A linear map $T:U\to V$ is *invertible* if there exists a linear map $S:V\to U$ such that ST is the identity map on U and TS is the identity map on V. Such a map S is called the *inverse* of T. If T is invertible, we denote the inverse by T^{-1} . This is justified by the fact that the inverse is unique, as the next proposition shows. July 22, 2025 ## Proposition Any invertible linear map has a unique inverse. Proof. #### Theorem A linear map is invertible if and only if it is injective and surjective. See proof in the book. #### Definition An invertible linear map is called an *isomorphism*. If there exists an isomorphism from one vector space to another, we say that the vector spaces are *isomorphic*. #### Theorem Two finite-dimensional vector spaces over \mathbb{F} are isomorphic if and only if they have the same dimension. *Proof.* (\Rightarrow) July 22, 2025 (⇔) ## **Linear maps and matrices** ## Example Let $A \in M_{m \times n}$ be a fixed matrix. Then, we can define a linear map $T_A \colon \mathbb{F}^n \to \mathbb{F}^m$ via $T_A(\mathbf{v}) = A\mathbf{v}$, where we recall matrix vector multiplication $(A\mathbf{v})_i = \sum_{k=1}^n A_{ik} v_k$ for $i = 1, \ldots, m$. Next we will see that we can use matrices to represent linear maps between finite dimensional vector spaces. July 22, 2025 9 / 35 #### Definition Let $T \in \mathcal{L}(U, V)$ where U and V are vector spaces. Let $\mathbf{u}_1, \ldots, \mathbf{u}_n$ and $\mathbf{v}_1, \ldots, \mathbf{v}_m$ be bases for U and V respectively. The matrix of T with respect to these bases is the $m \times n$ matrix $\mathcal{M}(T)$ with entries A_{ij} , $i = 1, \ldots, m$, $j = 1, \ldots, n$ defined by $$T\mathbf{u}_k = A_{1k}\mathbf{v}_1 + \cdots + A_{mk}\mathbf{v}_m$$ i.e. the kth column of A is the scalars needed to write $T\mathbf{u}_k$ as a linear combination of the basis of V: $$T\mathbf{u}_k = \sum_{i=1}^m A_{ik}\mathbf{v}_i$$ Note that since a linear map $T \in \mathcal{L}(U, V)$ is uniquely determined by its image on a basis of U, we see that once we pick basis of U and V its matrix representation is uniquely determined. July 22, 2025 ## Example Let $D \in \mathcal{L}(\mathbb{P}_4(\mathbb{R}), \mathbb{P}_3(\mathbb{R}))$ be the differentiation map, Dp = p'. Find the matrix of D with respect to the standard bases of $\mathbb{P}_3(\mathbb{R})$ and $\mathbb{P}_4(\mathbb{R})$. Standard basis: $1, x, x^2, x^3, (x^4)$ $T(u_1)$ $T(u_2)$ $T(u_3)$ $T(u_4)$ $T(u_5)$ The matrix is: - Observe that if we choose bases $\mathbf{u}_1, \ldots, \mathbf{u}_n$ and $\mathbf{v}_1, \ldots, \mathbf{v}_m$ for U, V and represent $T \in \mathcal{L}(U, V)$ as a matrix $\mathcal{M}(T)$, then the corresponding map can be obtained by just working with the coordinates of vectors in U, V with respect to the chosen basis - If $\mathbf{u} = \sum_{i=1}^{n} \alpha_i \mathbf{u}_i$, then the coordinates of $T(\mathbf{u})$ with respect to $\mathbf{v}_1, \dots, \mathbf{v}_m$ can be obtained by the matrix vector multiplication $\mathcal{M}(T)\alpha$, where α is the $n \times 1$ matrix with entries α_i July 22, 2025 12 / 35 #### Example If we want to find the derivative of $p=x^4+12x^3-5x^2+7$ with respect to the standard monomial basis of $\mathbb{P}_4(\mathbb{R})$, we use $\mathcal{M}(D)$ from the previous example to obtain $$\mathcal{M}(D) lpha = egin{pmatrix} 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 2 & 0 & 0 \ 0 & 0 & 0 & 3 & 0 \ 0 & 0 & 0 & 0 & 4 \end{pmatrix} egin{pmatrix} 7 \ 0 \ -5 \ 12 \ 1 \end{pmatrix} = egin{pmatrix} 0 \ -10 \ 36 \ 4 \end{pmatrix}.$$ Thus, translating back into the monomial basis of $\mathbb{P}_3(\mathbb{R})$ gives $D(p) = -10x + 36x^2 + 4x^3$. July 22, 2025 13 / 35 # Other points - Looking at matrices as representations of linear maps gives us an intuitive explanation for why we do matrix multiplication the way we do! In fact, we want matrix multiplication to represent composition of linear maps - We can use matrices to solve linear systems. ## **Determinants** ## **Determinant** - The determinant is a function from $M_{n\times n}\to \mathbb{F}$, i.e. it is a function from the entries of a square matrix to a real or complex number. - Notation: det(A) = |A| - The determinant has applications in solving linear systems, computing eigenvalues, etc # **Example:** 2×2 matrix The determinant of a 2×2 matrix is $$\begin{vmatrix} a & b \\ c & d \end{vmatrix} =$$ # **Example:** 3×3 matrix There is a trick for finding the determinant of a 3 by 3 matrix: $$|A| =$$ ## **Cofactor expansion** For other $n \times n$ matrices, one can compute the determinant using **cofactor expansion**. ## Definition (Cofactor expansion) Let $A = \{a_{j,k}\}_{j,k=1}^n$ be a $n \times n$ matrix. Let $M_{j,k}$ denote the determinant of the $(n-1) \times (n-1)$ matrix obtained by removing the j^{th} row and the k^{th} column of A. For each row $j = 1, \ldots, n$ $$|A| = \sum_{k=1}^{n} a_{j,k} (-1)^{j+k} M_{j,k}.$$ Similarly, for each column k = 1, ..., n $$|A| = \sum_{i=1}^{n} a_{j,k} (-1)^{j+k} M_{j,k}.$$ The numbers $C_{i,k} = (-1)^{j+k} M_{i,k}$ are called *cofactors*. #### Proposition The determinant of a diagonal matrix or triangular matrix is the product of the entries on the diagonal. Sketch of proof. ## Inverse of a matrix ## Theorem Let A be an $n \times n$ invertible matrix and let $C = \{C_{j,k}\}_{j,k=1}^n$ be its cofactor matrix. Then $$A^{-1} = \frac{1}{|A|}C^T$$ Note: The matrix A is invertible if and only if the linear map represented by the matrix is an isomorphism. 21 / 35 ## Cramer's rule ## Corollary Suppose A is an $n \times n$ invertible matrix. The linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution given by $$x_i = \frac{|A_i|}{|A|}, \quad i = 1, \ldots, n,$$ where A_i is the matrix obtained by replacing the i^{th} column of A with **b**. July 22, 2025 22 / 35 # Transpose of a matrix ## Definition The *transpose* of an $m \times n$ matrix A is the $n \times m$ matrix, denoted A^T , defined entry-wise as $\{A_{j,k}^T\} = \{A_{k,j}\}$ for j = 1, ..., m and k = 1, ..., n (i.e. the rows of A are the columns of A^T and the columns of A are the rows of A^T) # Properties of the determinant ## Proposition $|A| \neq 0$ if and only if A is invertible ## Proposition Let A be an $n \times n$ real matrix. - 1 If A has a zero column, then |A| = 0. - 2 If A has two equal columns, then |A| = 0. - **3** If one column of A is a multiple of another, then |A| = 0. - **4** |AB| = |A||B| - **6** $|\alpha A| = \alpha^n |A|$ for $\alpha \in \mathbb{F}$ - **6** $|A^T| = |A|$ # Inner product spaces ## **Complex numbers** Recall that for a complex number z = a + ib, we define the following: - Real part: Re(z) = a, - Imaginary part: Im(z) = b, - Complex conjugate: $\overline{z} = a ib$, - Modulus: $|z| = \sqrt{Re(z)^2 + Im(z)^2} = \sqrt{a^2 + b^2}$ We have $|z|^2 = z\overline{z}$ and $Re(z) = \frac{z+\overline{z}}{2}$. ## Definition Let V be an \mathbb{F} -vector space. A function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{F}$ is called *inner product* on V if the following holds: - **1** (Conjugate) symmetry: $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ for all $\mathbf{x}, \mathbf{y} \in V$, where \overline{a} denotes the complex conjugate for $a \in \mathbb{C}$ - 2 Linearity in the first argument: $\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and $\alpha, \beta \in \mathbb{F}$ - **3** Positive definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} = \mathbf{0}$ A vector space equipped with an inner product is called an inner product space. July 22, 2025 27 / 35 #### Example - Standard inner product on \mathbb{R}^n : $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ - Standard inner product on \mathbb{C}^n : $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i \overline{y}_i$ for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ - On the space of polynomials $\mathbb{P}_n(\mathbb{R})$: $\langle \boldsymbol{p}, \boldsymbol{q} \rangle = \int_{-1}^1 p(x) q(x) \mathrm{d}x$ for $\boldsymbol{p}, \boldsymbol{q} \in \mathbb{P}_n(\mathbb{R})$ #### Proposition Let V be an inner product space. Then $\mathbf{x} = \mathbf{0}$ if and only if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for all $\mathbf{y} \in V$. Proof. # **Cauchy-Schwarz Inequality** ## Proposition Let V be an inner product space. Then $$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \sqrt{\langle \mathbf{y}, \mathbf{y} \rangle}$$ for all $\mathbf{x}, \mathbf{y} \in V$. ## Proof. #### Proposition Let V be an inner product space. Then $\langle \cdot, \cdot \rangle$ induces a norm on V via $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ for all $\mathbf{x} \in V$. Proof. Note: With this identification the Cauchy-Schwarz inequality can be restated as: $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\| \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in V$. #### Example The norm introduced by the standard inner product on \mathbb{R}^n is the Euclidean distance. July 22, 2025 #### References Axler S. Linear Algebra Done Right. 3rd ed. Undergraduate Texts in Mathematics. Springer, 2015. Available from: https://link.springer.com/book/10.1007/978-3-319-11080-6 Treil S. *Linear Algebra Done Wrong*. 2017. Available from: https://www.math.brown.edu/streil/papers/LADW/LADW.html