Module 9: Linear Algebra III Operational math bootcamp

Ichiro Hashimoto

University of Toronto

July 23, 2025

July 23, 2025

Outline

- Adjoints, unitaries and orthogonal matrices
- Orthogonal decomposition
- Spectral theory
 - Eigenvalues and eigenvectors
 - Algebraic and geometric multiplicity of eigenvalues
 - Matrix diagonalization

Recall

Definition

Let V be an \mathbb{F} -vector space. A function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{F}$ is called *inner product* on V if the following holds:

- **1** (Conjugate) symmetry: $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ for all $\mathbf{x}, \mathbf{y} \in V$, where \overline{a} denotes the complex conjugate for $a \in \mathbb{C}$
- 2 Linearity in the first argument: $\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and $\alpha, \beta \in \mathbb{F}$
- **3** Positive definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} = \mathbf{0}$

A vector space equipped with an inner product is called an inner product space.

July 23, 2025

Recall

- Standard inner product on \mathbb{R}^n : $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- Standard inner product on \mathbb{C}^n : $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i \overline{y}_i$ for $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$
- On the space of polynomials $\mathbb{P}_n(\mathbb{R})$: $\langle \boldsymbol{p}, \boldsymbol{q} \rangle = \int_{-1}^1 p(x) q(x) \mathrm{d}x$ for $\boldsymbol{p}, \boldsymbol{q} \in \mathbb{P}_n(\mathbb{R})$

Let V be an inner product space. Then

$$|\langle \mathbf{x}, \mathbf{y}
angle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x}
angle} \sqrt{\langle \mathbf{y}, \mathbf{y}
angle}$$

for all $\mathbf{x}, \mathbf{y} \in V$.

Proposition

Let V be an inner product space. Then $\langle \cdot, \cdot \rangle$ induces a norm on V via $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ for all $\mathbf{x} \in V$.

Proof.

Note: With this identification the Cauchy-Schwarz inequality can be restated as: $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq \|\mathbf{x}\| \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in V$.

Example

The norm introduced by the standard inner product on \mathbb{R}^n is the Euclidean distance.

July 23, 2025

Adjoint

Definition

Let U, V be inner product spaces and $S: U \to V$ be a linear map. The adjoint S^* of S is the linear map $S^*: V \to U$ defined such that

$$\langle S\mathbf{u}, \mathbf{v} \rangle_{\mathbf{V}} = \langle \mathbf{u}, S^* \mathbf{v} \rangle_{\mathbf{V}}$$
 for all $\mathbf{u} \in U, \mathbf{v} \in V$.

July 23, 2025

Proposition

Let U, V be inner product spaces and $S: U \to V$ be a linear map. Then S^* is unique and linear.

Proof. Let I and In suts fres the defaulton of 3x. For any WEV, NEV, sme Tradto are both adjoint of 5 (u, T, n), ((Su, n), () (u, 12 n), Then <u, Tin-Tin), = 0 for ueu, "nev. Lat u= Tin-Tin, we have $||T_{N-1} \cdot n||^2 = 0 = T_{N-1} \cdot T_{N-1} \cdot (uniqueness)$

= 2 < u, 3 * N, 7 + B < u, 5 * N, 5 o = < u, 25 N, 7 + < u, B 5 * N, 7 o

= < U, d 5* v, + B 34 v, > v

By the aniqueness we've proud earlier, we have

Example

Define $S: \mathbb{R}^3 \to \mathbb{R}^2$ by $S\mathbf{x} = (2x_1 + x_3, -x_2)$. What is the adjoint operator S^* ?

$$\begin{pmatrix} 3\gamma, & y \rangle = \left\langle \begin{pmatrix} 2\gamma_1 + \gamma_3 \\ -\gamma_2 \end{pmatrix}, \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix} \right\rangle .$$

$$= \left\langle (2\gamma_1 + \gamma_3) & \gamma_1 + (-\gamma_2) \cdot \gamma_2 \right\rangle$$

$$= \left\langle \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{pmatrix}, \begin{pmatrix} \gamma_1 \\ -\gamma_2 \\ \gamma_3 \end{pmatrix} \right\rangle$$

$$= \left\langle \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{pmatrix}, \begin{pmatrix} \gamma_1 \\ -\gamma_2 \\ \gamma_3 \end{pmatrix} \right\rangle$$

Proposition

Let $A \in M_{m \times n}(\mathbb{F})$ be a matrix and $T_A \colon \mathbb{F}^n \to F^m \colon \mathbf{x} \mapsto A\mathbf{x}$. Then, $T_A^*(\mathbf{x}) = A^*\mathbf{x}$, where $A^* \in M_{n \times m}(\mathbb{F})$ with $(A^*)_{ij} = \overline{A_{ji}}$ for $i = 1, \ldots, n$ and $j = 1, \ldots, m$.

In particular, if $\mathbb{F}=\mathbb{R}$, the adjoint of the matrix is given by its transpose,denoted A^T , and if $\mathbb{F}=\mathbb{C}$, it is given by its conjugate transpose, denoted A^* .

-). ensures the existence of the adjoint operator for linear maps between finite directional vector spaces.

July 23, 2025

Proof for \mathbb{R} :

$$\langle A_{x}, y \rangle = (A_{x})^{T} \mathcal{Y}$$

$$= \chi^{T}(A^{T} \mathcal{Y}).$$

$$= \langle \chi, A^{T} \mathcal{Y} \rangle$$

$$= \chi^{T}(A^{T} \mathcal{Y})$$

Definition

A matrix $O \in M_n(\mathbb{R})$ is called *orthogonal* if its inverse is given by its transpose, i.e. $O^{T}O = OO^{T} = I$.

A matrix $U \in M_n(\mathbb{C})$ is called *unitary* if the inverse is given by the conjugate transpose, i.e. $U^*U = UU^* = I$.

Lat to be unitory く ヷャ,ひょう こ く ア, び で う> = と ア, ラ> T does not charge inner product, norn, angle, etc.

Example

• Let $\varphi \in [0, 2\pi]$. Then

$$\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$$

Rotatra

is an orthogonal matrix. What does it describe geometrically?

• The following is a unitary matrix:

$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = A$$

$$A A^{\dagger} : \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = Td.$$

July 23, 2025

Definition

Let $A \in M_n(\mathbb{F})$. We call A self-adjoint if $A^* = A$. In the case $\mathbb{F} = \mathbb{R}$, such an A is called *symmetric* and if $\mathbb{F} = \mathbb{C}$, such an A is called *Hermitian*.

Orthogonality and Gram-Schmidt

Definition

Two vectors $\mathbf{x}, \mathbf{y} \in V$ are called *orthogonal* if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, denoted $\mathbf{x} \perp \mathbf{y}$. We call them *orthonormal* if additionally the vectors are normalized, i.e. $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$. A basis $\mathbf{x}_1, \ldots, \mathbf{x}_n$ of V is called *orthonormal basis* (ONB), if the vectors are pairwise orthogonal and normalized.

July 23, 2025 17 / 37

Proposition

Let $\mathbf{x}_1, \dots, \mathbf{x}_k \in V$ be orthonormal. Then the system of vectors is linearly independent.

Proof. Let
$$\sum_{i=1}^{h} d_i x_i = 0$$
.

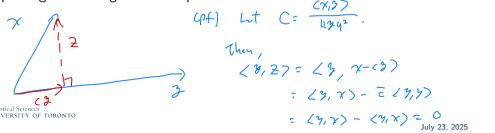
Then $0 = \left(\sum_{i=1}^{h} d_i x_i, \sum_{i=1}^{h} d_i x_i\right)$

$$= \sum_{i=1}^{h} \frac{d_i x_i}{d_i d_i} \frac{(x_i, x_i)}{(x_i, x_i)} + \sum_{i=1}^{h} d_i d_i \frac{d_i}{d_i} \frac{(x_i, x_i)}{(x_i)}$$

Proposition (Orthogonal Decomposition)

Let $\mathbf{x}, \mathbf{y} \in V$ with $\mathbf{y} \neq 0$. Then, there exist $c \in F$ and $\mathbf{z} \in V$ such that $\mathbf{x} = c\mathbf{y} + \mathbf{z}$ with $\mathbf{y} \perp \mathbf{z}$.

Given a basis, we can obtain an ONB from it using the Gram-Schmidt algorithm by repeating this orthogonal decomposition.



Proposition (Gram-Schmidt Algorithm)

Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in V$ be a system of linearly independent vectors. Define $\mathbf{y}_1 = \mathbf{x}_1/\|\mathbf{x}_1\|$. For $i = 2, \dots, n$ define \mathbf{y}_i inductively by

$$\mathbf{y}_{i} = \frac{\mathbf{x}_{i} - \sum_{k=1}^{i-1} \langle \mathbf{x}_{i}, \mathbf{y}_{k} \rangle \mathbf{y}_{k}}{\|\mathbf{x}_{i} - \sum_{k=1}^{i-1} \langle \mathbf{x}_{i}, \mathbf{y}_{k} \rangle \mathbf{y}_{k}\|}.$$

$$\mathbf{y}_{i} = \frac{\mathbf{x}_{i} - \sum_{k=1}^{i-1} \langle \mathbf{x}_{i}, \mathbf{y}_{k} \rangle \mathbf{y}_{k}}{\|\mathbf{x}_{i} - \sum_{k=1}^{i-1} \langle \mathbf{x}_{i}, \mathbf{y}_{k} \rangle \mathbf{y}_{k}\|}.$$

Then the y_1, \ldots, y_n are orthonormal and

$$\mathrm{span}\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}=\mathrm{span}\{\mathbf{y}_1,\ldots,\mathbf{y}_n\}.$$

The proof is omitted but can be found in the book.

Recall: connection between matrices and linear maps

Multiplication by a matrix defines a linear map

Let $A \in M_{m \times n}$ be a fixed matrix. Then, we can define a linear map $T_A \colon \mathbb{F}^n \to \mathbb{F}^m$ via $T_A(\mathbf{v}) = A\mathbf{v}$, where we recall matrix vector multiplication $(A\mathbf{v})_i = \sum_{k=1}^n A_{ik} v_k$ for $i = 1, \ldots, m$.

Given a bases for U and V, $T: U \rightarrow V$ can be written as a matrix

Let $T \in \mathcal{L}(U, V)$ where U and V are vector spaces. Let $\mathbf{u}_1, \ldots, \mathbf{u}_n$ and $\mathbf{v}_1, \ldots, \mathbf{v}_m$ be bases for U and V respectively. The matrix of T with respect to these bases is the $m \times n$ matrix $\mathcal{M}(T)$ with entries A_{ij} , $i = 1, \ldots, m$, $j = 1, \ldots, n$ defined by

$$T\mathbf{u}_k = A_{1k}\mathbf{v}_1 + \cdots + A_{mk}\mathbf{v}_m.$$

expert using mis

July 23, 2025

Eigenvalues

Definition

Given an operator $A \colon V \to V$ and $\lambda \in \mathbb{F}$, λ is called an *eigenvalue* of A if there exists a non-zero vector $\mathbf{v} \in V \setminus \{\mathbf{0}\}$ such that

$$A\mathbf{v}=\lambda\mathbf{v}.$$

We call such \mathbf{v} an eigenvector of A with eigenvalue λ . We call the set of all eigenvalues of A spectrum of A and denote it by $\sigma(A)$.

Motivation in terms of linear maps: Let $T\colon V\to V$ be a linear map, where V is a vector space. We would like to describe the action of this linear map in a particularly "nice" way: such that T acts only by scaling, i.e. $T\mathbf{v}_i=\lambda_i\mathbf{v}_i$ where $\lambda_i\in\mathbb{F}$ for $i=1,\ldots,n$.

July 23, 2025 22 / 37

Finding eigenvalues

Note: here we will assume $\mathbb{F}=\mathbb{C}$, so that we are working on an algebraically closed field.

- Rewrite $A\mathbf{v} = \lambda \mathbf{v}$ as $(A \lambda \mathbf{I}) = 0 \iff \mathbf{v} \in \ker(A \lambda \mathbf{I})$
- Thus, if λ is an eigenvalue, we can find the corresponding eigenvectors by finding the null space of $A \lambda I$.
- The subspace $null(A \lambda I)$ is called the *eigenspace*
- To find the eigenvalues of A, one must find the scalars λ such that $\text{null}(A \lambda I)$ contains non-trivial vectors (i.e. not $\mathbf{0}$)
- Recall: We saw that $\underline{T} \in \mathcal{L}(U, V)$ is injective if and only if null $T = \{\mathbf{0}\}$.
- Thus λ is an eigenvalue if and only if $A \lambda I$ is not invertible.
- Recall: $|A| \neq 0$ if and only if A is invertible.
- Thus λ is an eigenvalue if and only if | A λ 2 | = 0

July 23, 2025

23 / 37

If dim 15=din V: M,

Theorem

The following are equivalent

- $\mathbf{0} \ \lambda \in \mathbb{F}$ is an eigenvalue of A,
- **2** $(A \lambda I)\mathbf{v} = 0$ has a non-trivial solution,
- **3** $|A \lambda I| = 0$.

Characteristic polynomial

Definition

If A is an $n \times n$ matrix, $p_A(\lambda) = |A - \lambda I|$ is a polynomial of degree n called the characteristic polynomial of A.

To find the eigenvectors of A, one needs to find the roots of the characteristic polynomial.

July 23, 2025

Example

Find the eigenvalues of

$$A = \begin{bmatrix} 4 & -2 \\ 5 & -3 \end{bmatrix}.$$

$$| A - \lambda I | = \begin{bmatrix} 4 - \lambda & -1 \\ 5 & -3 - \lambda \end{bmatrix} = (4 - \lambda)(-3 - \lambda) - (-2) - 5$$

$$= \lambda^2 - \lambda - 12 + (0 = \lambda^2 - \lambda - 2 = (\lambda - 2)(\lambda t))$$

$$= \lambda^2 - \lambda - 12 + (0 = \lambda^2 - \lambda - 2 = (\lambda - 2)(\lambda t))$$

$$= \frac{\lambda^2 - \lambda}{2} - \frac{\lambda^2 - \lambda}{2} - \frac{\lambda^2 - \lambda}{2} = \frac{(\lambda - 2)(\lambda t)}{2}$$

$$= \frac{\lambda^2 - \lambda}{2} - \frac{\lambda^2 - \lambda}{2} - \frac{\lambda^2 - \lambda}{2} = \frac{(\lambda - 2)(\lambda t)}{2}$$

Multiplicity
$$(\lambda - 1)^3 (\lambda - 2)^3$$

$$A(gebraic multiplicity of $\lambda = 0$ is 2 , $\lambda = 1$ is 3 , $\lambda = 2$ is 1 .$$

Definition

The multiplicity of the root λ in the characteristic polynomial is called the algebraic multiplicity of the eigenvalue λ . The dimension of the eigenspace null $(A - \lambda I)$ is called the geometric multiplicity of the eigenvalue λ .

> I of nectors consisting a burn of this subspace

July 23, 2025 27 / 37

Definition (Similar matrices)

Square matrices A and B are called *similar* if there exists an invertible matrix S such that

$$A = SBS^{-1}$$
.

Similar matrices have the same characteristic polynomials and hence the same eigenvalues (see exercise).

Theorem

Suppose A is a square matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Let $\mathbf{v}_1, \ldots, \mathbf{v}_n$ be eigenvectors corresponding to these eigenvalues. Then $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent.

By 12), (3), we have $\sum_{i=1}^{n} d_i(\lambda_i - \lambda_{4n}) \mathcal{N}_i = 0$ But N. - , Nx 13 linearly independet. This di(di-han) =0, Viz 1,-, /2. to by assupting Sina dithan, we have di=0, vi=1,-1/2. Then, by (1), we also have den = 0. July 23, 2025

30 / 37

I di dan Vi = 0 --- (3)

Multiply has to a),

Corollary

If a $\underline{A} \in M_n(\mathbb{C})$ has n distinct eigenvalues, then A is diagonalizable. That is there exists an invertible matrix $S \in M_n(\mathbb{C})$ such that $A = SDS^{-1}$, where D is a diagonal matrix with the eigenvalues of A in the diagonal.

Let
$$N:$$
 be eigenvectors corresponds to λc .

Let $S = (N_1 - - N_n)$. $D = (\lambda_1 - \lambda_n)$.

S is invertible since N_1, \dots, N_n is linearly and spect.

Thus $A \cdot S = (AN_1 - - AN_n) = (\lambda_1 N_1 - - \lambda_n N_n) = 30$

Statistical Sciences UNIVERSITY OF TORON

July 23, 2025

Theorem

Let $A:V\to V$ be an operator with n eigenvalues. A is diagonalizable if and only if for each eigenvalue λ , the geometric multiplicity of λ and the algebraic multiplicity of λ are the same.

Example: a diagonalizable matrix

$$\begin{bmatrix} 1 & 2 \\ 8 & 1 \end{bmatrix} \text{ is diagonalizable.}$$

$$\begin{vmatrix} 1-\lambda & 2 \\ 8 & (-\lambda) \end{vmatrix} = \lambda^2 - 2\lambda + (6 = \lambda^2 - 2\lambda - 65)$$

$$= (\lambda - 5) (\lambda + 3)$$

Example continued

$$\lambda = -3$$

$$\begin{pmatrix} 4 & 2 \\ 8 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightleftharpoons 2\pi 13 = 0$$

$$eigenvictor : \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$\lambda = 5$$

$$\begin{pmatrix} -4 & 2 \\ 8 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightleftharpoons 2x - 3 = 0$$

eigenvector:

July 23, 2025

Example continued

Let
$$3 = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$$
. $3^{-1} = \frac{1}{4} \begin{pmatrix} 2 & -7 \\ 2 & 1 \end{pmatrix}$.

$$3^{-1} A S = \frac{1}{4} \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 8 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 2 \end{pmatrix}$$

$$= \frac{1}{4} \begin{pmatrix} -6 & 3 \\ 10 & 5 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 2 \end{pmatrix}$$
ergenvalues.

Example: a matrix that is not diagonalizable

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ is not diagonalizable.}$$

$$\begin{vmatrix} 1-\lambda & 1 \\ 0 & 1-\lambda \end{vmatrix} = (\lambda - ()^{2}) \text{ algebraic multiplicity of } \lambda \geq 1 \text{ is } 2$$

$$\begin{pmatrix} 7 \\ 4 \end{pmatrix} \in \text{ ker } (A - I)$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} = 0 \iff 3 = 0 \text{ in } \text{ ker}(A - I) = 1$$

$$\text{geometric multiplicity of } \lambda \geq 1 \text{ is } 1$$

References

Howard Anton and Chris Rorres. Elementary Linear Algebra. 11th ed. Wiley. 2014

Axler S. Linear Algebra Done Right. 3rd ed. Undergraduate Texts in Mathematics. Springer, 2015. Available from:

https://link.springer.com/book/10.1007/978-3-319-11080-6

Treil S. Linear Algebra Done Wrong. 2017. Available from: https://www.math.brown.edu/streil/papers/LADW/LADW.html

