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Outline

® Adjoints, unitaries and orthogonal matrices

® QOrthogonal decomposition

® Spectral theory
® Eigenvalues and eigenvectors

® Algebraic and geometric multiplicity of eigenvalues

® Matrix diagonalization
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Recall

Let V be an F-vector space. A function (-,-): V x V — F is called inner product on V
if the following holds:

® (Conjugate) symmetry: (x,y) = (y,x) for all x,y € V, where 3 denotes the
complex conjugate for a € C

@® Linearity in the first argument: (ax + By, z) = a(x,z) + 5(y, z) for all x,y,z € V
and o, B € F

© Positive definiteness: (x,x) > 0 and (x,x) =0 if and only if x =10

A vector space equipped with an inner product is called an inner product space.
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Recall

e Standard inner product on R™: (x,y) = > ; x;y; for x,y € R”

e Standard inner product on C™: (x,y) = >, x;y; for x,y € C"
T ox1y
® On the space of polynomials P,(R): (p,q) = ffl p(x)q(x)dx for p, q € P,(R)

Let V be an inner product space. Then

(x| < V%, x)\/(y, y)

for all x,y € V.
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Proposition

Let V be an inner product space. Then (-,-) induces a norm on V via ||x|| = \/(x, x)
forall x € V.

Proof.
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Note: With this identification the Cauchy-Schwarz inequality can be restated as:
[, y)] < [|x[[[ly]| for all x,y € V.

The norm introduced by the standard inner product on R"” is the Euclidean distance.
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Adjoint

Definition

Let U, V be inner product spaces and S: U — V be a linear map. The adjoint S* of S
is the linear map $*: V — U defined such that

(5u,v)® = <u,5*v>@ forallue U,ve V.

Q\ Efﬁ”“‘dﬁ ?
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Proposition
Let U, V be inner product spaces and S: U — V be a linear map. Then S* is unique
and linear.

Proof. Lt /rl e ’(2 5-147[7} ,C,‘,,} fle hefridin Uf S X ,

T"—JT ve hofle cojort o
Foy Cvy V\C’U/ IV\CV s e B Ovl{\ o(_} OLs

< w, Tmny, @{5&1\ 4/\) O(U\/Tz’l/?

AV ey, Ymev.

(A <°\/ Tow- TL”">’D’:O fov

[ .1 we Twv- s, ve hove

[ Twe-twl®=0 =) Tr= GV (Waipreney)

Statistical Sciences
UNIVERSITY OF TORONTO

July 23, 2025 9/37



Cu, STLwapv)y = £ 30, dwnthvD,,.
— C,vm)"'*}ffi-( l\H:-LyiJ-)«

=od (Fu, w4 5w ndy

= AL, ST 4 by, Smd,

= Lo, A §T D, + <u\,/5§'rrv\z>17

= 4[/‘/ o 9w éghr’”‘?)zj

~——— ~—

(?7 {4{ O [t hess W.L\VL p\«a\»-/{ {Q_r[,wy/ e lee

= .
Statistical Sciences

¥ UNIVERSITY OF TORONTO f‘f (.{q/\l’( &\/\/\L) < & §yfl/\z " ﬁ §ﬂ(|/:l .

July 23, 2025 10/37



Define S: R3 — R? by Sx = (2x1 + x3, —x2). What is the adjoint operator $*? |

R N TR Ty

- X
| ©
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Proposition
Let A € Myyun(F) be a matrix and Ta: F” — F™: x — Ax. Then, T;(x) = A*x,
where A* € My m(F) with (A*);; = Ajifori=1,...,nand j=1,...,m.

In particular, if F = R, the adjoint of the matrix is given by its transpose,denoted AT,
and if F = C, it is given by its conjugate transpose, denoted A*. - N

UP—l‘f &/}b\r &/y Lh(r«v pasps b)..."‘wa\,‘
Siacte A sl veepr  $pac<s.
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Proof for R:

& Ax, w2 (A) 2
- ”Xq<AT ’?‘>
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Definition

A matrix O € M,(R) is called orthogonal if its inverse is given by its transpose, i.e.
070=00"=1_

A matrix U € M,(C) is called unitary if the inverse is given by the conjugate
transpose, i.e. U*U = UU* = |.

LA VU be  was 'Lwy
UV - L, UU7D= Lx, %2
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® Let v € [0,27]. Then
(COS(sO) —sin(<p)>

sin(p)  cos(p) Rotadriq
is an orthogonal matrix. What does it describe geometrically?
® The following is a unitary matrix:
0 —i
(2 3)-
~ ' o)
» (0 ¢ O—<\_ (I .
A A ¢ u) ( ¢ v v o1 H
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Definition

Let A€ My(FF). We call A self-adjoint if A* = A. In the case F = R, such an Ais
called wtric and if F = C, such an A is called Hermitian.
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Orthogonality and Gram-Schmidt

Definition

Two vectors x,y € V are called orthogonal if (x,y) = 0, denoted x L y. We call them
orthonormal if additionally the vectors are normalized, i.e. ||x|| = |ly|| = 1. A basis
X1,...,Xp Of V is called orthonormal basis (ONB), if the vectors are pairwise

orthogonal and normalized.

Tw th ov CM/ *e(j = (O,--’/ t,-- o chvv\s oM
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Proposition

Let X1,...,X, € V be orthonormal. Then the system of vectors is linearly independent.

fo
Proof. Lot 3 Le%s =0 _

!
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Proposition (Orthogonal Decomposition)
Let x,y € V with y # 0. Then, there exist ¢ € F and z € V such that x = cy + z with
y Lz

Given a basis, we can obtain an ONB from it using the Gram-Schmidt algorithm by
repeating this orthogonal decomposition.
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Proposition (Gram-Schmidt Algorithm)

Let x1,...,%, € V be a system of linearly independent vectors. Define y1 = x1/||x1]|.
For i =2,...,n define y; inductively by y Y= {555
NER o

|y - €%, %> % ”l

G = Sl (X0, Vi) Y
= = .
i — S5 (%7, Yyl

Then the yy,...,y, are orthonormal and

span{xi,...,Xn} = span{y1,...,¥n}

The proof is omitted but can be found in the book.
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Recall: connection between matrices and linear maps

Multiplication by a matrix defines a linear map

Let A € M,xn be a fixed matrix. Then, we can define a linear map T4: F" — F™ via
Ta(v) = Av, where we recall matrix vector multiplication (Av); = >, _; A vk for
i=1,...,m.

Given a bases for U and V, T : U — V can be written as a matrix

Let T € £(U, V) where U and V are vector spaces. Let uj,...,u, and vi,...,v,, be
bases for U and V respectively. The matrix of T with respect to these bases is the
m x n matrix M(T) with entries Ajj, i=1,...,m, j=1,...,n defined by

& WJ
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Eigenvalues

Definition
Given an operator A: V — V and A € IF, A is called an eigenvalue of A if there exists
a non-zero vector v € V' \ {0} such that

Av = )\v.

We call such v an eigenvector of A with eigenvalue A\. We call the set of all
eigenvalues of A spectrum of A and denote it by o(A).

Motivation in terms of linear maps: Let T: V — V be a linear map, where V is a
vector space. We would like to describe the action of this linear map in a particularly
“nice” way: such that T acts only by scaling, i.e. Tv; = A\;v; where \; € F for
i=1,...,n.
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Finding eigenvalues

Note: here we will assume F = C, so that we are working on an algebraically closed

field.

&

(A’ (\1)/\/\:0 = w & l:(VCA"-)‘L)

Rewrite Av = A\v as

Thus, if X\ is an eigenvalue, we can find the corresponding eigenvectors by finding
the null space of A Al

The subspace null(A — A/) is called the eigenspace

To find the eigenvalues of A, one must find the scalars A such that null(A — \/)
contains non-trivial vectors (i.e. not 0)

Recall: We saw that T € £(U, V) is injective if and only if null T = {0}.

Thus A is an eigenvalue if and only if A— Al is not invertible. +~

Recall: |A| # 0 if and only if A is invertible. T dim Gk VM,

Thus X is an eigenvalue if and only if [A~\zl=0 Trs merstihle (=2 T 15 jopeshi
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The following are equivalent

@ )\ € F is an eigenvalue of A,
® (A — M)v =0 has a non-trivial solution,
© |A—\|=0.
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Characteristic polynomial

Definition

If Aiis an n x n matrix, pa(\) = |A — Xl is a polynomial of degree n called the
characteristic polynomial of A.

To find the eigenvectors of A, one needs to find the roots of the characteristic
polynomial.
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Example

Find the eigenvalues of
4 -2

- )

y-x -1

_ - ~3-x)— (2)s5
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Multiplicity ¢v~t)
3 9) Q
pon)e A O 0T O
A(?(_brw\c M“l}rr,lrc.} U} A:O cS Z/
A=los 3
r=2 s |,

Definition
The multiplicity of the root A in the characteristic polynomial is called the algebraic

multiplicity of the eigenvalue A. The dimension of the eigenspace null(A — \/) is called
/\I-—/\_—\f_f\/\d_v‘

the geometric multiplicity of the eigenvalue .
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Definition (Similar matrices)
Square matrices A and B are called similar if there exists an invertible matrix S such
that

A= SBS L.

Similar matrices have the same characteristic polynomials and hence the same
eigenvalues (see exercise).
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Suppose A is a square matrix with distinct eigenvalues A1, ..., \n. Let vy, ..
eigenvectors corresponding to these eigenvalues. Then v1,...,v, are linearly
independent.

Proof. B7 pedeetron 0w N,

9@.)’1 ot n=| s J(V,v;‘sl G e ’ﬂw’-\’S 0'& one  v<ctor,
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If a A € M,(C) has n distinct eigenvalues, then A is diagonalizable. That is there

exists an invertible matrix S € M,(C) such that A= SDS~!, where D is a diagonal
matrix with the eigenvalues of A in the diagonal.

-+ W h< ,{l\?(w\rud}‘wﬁ Covres oty LN .
LA S (v m Wa) y D”CI O)

A —~—~————
§ rs "Vivtl"h'[‘l‘-v_ St AN, I’l/\,‘ 33 (u«w.uvb ¢‘-#[)<,Jf

/UMV‘ Aj - (AV\I A'\/\,\)'— CAy - >‘u1/\h)f 3’0
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Let A:V — V be an operator with n eigenvalues. A is diagonalizable if and only if for

each eigenvalue \, the geometric multiplicity of A and the algebraic multiplicity of A

\
are the same.

k4
3 Statistical Sciences
& UNIVERSITY OF TORONTO

July 23, 2025 32/37



Example: a diagonalizable matrix

1 2. . .
[8 1] is diagonalizable.

o sl - (0= Nmae
< La- o) (A%3)

N
Acy Hreet -e.t‘j.f,h\m.lue ]

R
T A

7::£> oimagﬁhchzugkl
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Example continued
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Example continued
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Example: a matrix that is not diagonalizable

1 1f. : .
[0 1] is not diagonalizable.

| U B @ B e il oAl 55 2
0 -k

(¥) e ko (A-1)
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Jy 0
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