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Outline

• Adjoints, unitaries and orthogonal matrices

• Orthogonal decomposition

• Spectral theory
• Eigenvalues and eigenvectors

• Algebraic and geometric multiplicity of eigenvalues

• Matrix diagonalization
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Recall

Definition

Let V be an F-vector space. A function →·, ·↑ : V ↓V ↔ F is called inner product on V
if the following holds:

1 (Conjugate) symmetry: →x, y↑ = →y, x↑ for all x, y ↗ V , where a denotes the
complex conjugate for a ↗ C

2 Linearity in the first argument: →ωx+ εy, z↑ = ω→x, z↑+ ε→y, z↑ for all x, y, z ↗ V
and ω,ε ↗ F

3 Positive definiteness: →x, x↑ ↘ 0 and →x, x↑ = 0 if and only if x = 0

A vector space equipped with an inner product is called an inner product space.
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Recall

Example

• Standard inner product on Rn: →x, y↑ =
∑n

i=1 xiyi for x, y ↗ Rn

• Standard inner product on Cn: →x, y↑ =
∑n

i=1 xiy i for x, y ↗ Cn

• On the space of polynomials Pn(R): →p,q↑ =
∫ 1
→1 p(x)q(x)dx for p,q ↗ Pn(R)

Proposition

Let V be an inner product space. Then

|→x, y↑| ≃
√
→x, x↑

√
→y, y↑

for all x, y ↗ V .
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Proposition

Let V be an inner product space. Then →·, ·↑ induces a norm on V via ⇐x⇐ =
√

→x, x↑
for all x ↗ V .

Proof.
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Note: With this identification the Cauchy-Schwarz inequality can be restated as:
|→x, y↑| ≃ ⇐x⇐⇐y⇐ for all x, y ↗ V .

Example

The norm introduced by the standard inner product on Rn is the Euclidean distance.
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Adjoint

Definition

Let U,V be inner product spaces and S : U ↔ V be a linear map. The adjoint S↑ of S
is the linear map S↑ : V ↔ U defined such that

→Su, v↑V = →u, S↑
v↑U for all u ↗ U, v ↗ V .
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Proposition

Let U,V be inner product spaces and S : U ↔ V be a linear map. Then S↑ is unique
and linear.

Proof.
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Example

Define S : R3 ↔ R2 by Sx = (2x1 + x3,⇒x2). What is the adjoint operator S↑?
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Proposition

Let A ↗ Mm↓n(F) be a matrix and TA : Fn ↔ Fm : x ⇑↔ Ax. Then, T ↑
A(x) = A↑

x,
where A↑ ↗ Mn↓m(F) with (A↑)ij = Aji for i = 1, . . . , n and j = 1, . . . ,m.

In particular, if F = R, the adjoint of the matrix is given by its transpose,denoted AT ,
and if F = C, it is given by its conjugate transpose, denoted A↑.
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Proof for R:
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Definition

A matrix O ↗ Mn(R) is called orthogonal if its inverse is given by its transpose, i.e.
OTO = OOT = I .

A matrix U ↗ Mn(C) is called unitary if the inverse is given by the conjugate
transpose, i.e. U↑U = UU↑ = I .
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Example

• Let ϑ ↗ [0, 2ϖ]. Then (
cos(ϑ) ⇒ sin(ϑ)
sin(ϑ) cos(ϑ)

)

is an orthogonal matrix. What does it describe geometrically?

• The following is a unitary matrix:

(
0 ⇒i
i 0

)
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Definition

Let A ↗ Mn(F). We call A self-adjoint if A↑ = A. In the case F = R, such an A is
called symmetric and if F = C, such an A is called Hermitian.
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Orthogonality and Gram-Schmidt

Definition

Two vectors x, y ↗ V are called orthogonal if →x, y↑ = 0, denoted x ⇓ y. We call them
orthonormal if additionally the vectors are normalized, i.e. ⇐x⇐ = ⇐y⇐ = 1. A basis
x1, . . . , xn of V is called orthonormal basis (ONB), if the vectors are pairwise
orthogonal and normalized.
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Proposition

Let x1, . . . , xk ↗ V be orthonormal. Then the system of vectors is linearly independent.

Proof.
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Proposition (Orthogonal Decomposition)

Let x, y ↗ V with y ⇔= 0. Then, there exist c ↗ F and z ↗ V such that x = cy+ z with
y ⇓ z.

Given a basis, we can obtain an ONB from it using the Gram-Schmidt algorithm by
repeating this orthogonal decomposition.
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Proposition (Gram-Schmidt Algorithm)

Let x1, . . . , xn ↗ V be a system of linearly independent vectors. Define y1 = x1/⇐x1⇐.
For i = 2, . . . , n define yj inductively by

yi =
xi ⇒

∑i→1
k=1→xi , yk↑yk

⇐xi ⇒
∑i→1

k=1→xi , yk↑yk⇐
.

Then the y1, . . . , yn are orthonormal and

span{x1, . . . , xn} = span{y1, . . . , yn}.

The proof is omitted but can be found in the book.
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Recall: connection between matrices and linear maps

Multiplication by a matrix defines a linear map

Let A ↗ Mm↓n be a fixed matrix. Then, we can define a linear map TA : Fn ↔ Fm via
TA(v) = Av, where we recall matrix vector multiplication (Av)i =

∑n
k=1 Aikvk for

i = 1, . . . ,m.

Given a bases for U and V , T : U ↔ V can be written as a matrix

Let T ↗ L(U,V ) where U and V are vector spaces. Let u1, . . . ,un and v1, . . . , vm be
bases for U and V respectively. The matrix of T with respect to these bases is the
m ↓ n matrix M(T ) with entries Aij , i = 1, . . . ,m, j = 1, . . . , n defined by

Tuk = A1kv1 + · · ·+ Amkvm.
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Eigenvalues

Definition

Given an operator A : V ↔ V and ϱ ↗ F, ϱ is called an eigenvalue of A if there exists
a non-zero vector v ↗ V \ {0} such that

Av = ϱv.

We call such v an eigenvector of A with eigenvalue ϱ. We call the set of all
eigenvalues of A spectrum of A and denote it by ς(A).

Motivation in terms of linear maps: Let T : V ↔ V be a linear map, where V is a
vector space. We would like to describe the action of this linear map in a particularly
“nice” way: such that T acts only by scaling, i.e. Tvi = ϱivi where ϱi ↗ F for
i = 1, . . . , n.
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Finding eigenvalues

Note: here we will assume F = C, so that we are working on an algebraically closed
field.

• Rewrite Av = ϱv as

• Thus, if ϱ is an eigenvalue, we can find the corresponding eigenvectors by finding
the null space of A⇒ ϱI .

• The subspace null(A⇒ ϱI ) is called the eigenspace

• To find the eigenvalues of A, one must find the scalars ϱ such that null(A⇒ ϱI )
contains non-trivial vectors (i.e. not 0)

• Recall: We saw that T ↗ L(U,V ) is injective if and only if nullT = {0}.
• Thus ϱ is an eigenvalue if and only if A⇒ ϱI is not invertible.

• Recall: |A| ⇔= 0 if and only if A is invertible.

• Thus ϱ is an eigenvalue if and only if
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Theorem

The following are equivalent

1 ϱ ↗ F is an eigenvalue of A,

2 (A⇒ ϱI )v = 0 has a non-trivial solution,

3 |A⇒ ϱI | = 0.
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Characteristic polynomial

Definition

If A is an n ↓ n matrix, pA(ϱ) = |A⇒ ϱI | is a polynomial of degree n called the
characteristic polynomial of A.

To find the eigenvectors of A, one needs to find the roots of the characteristic
polynomial.
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Example

Find the eigenvalues of [
4 ⇒2
5 ⇒3

]
.
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Multiplicity

Definition

The multiplicity of the root ϱ in the characteristic polynomial is called the algebraic
multiplicity of the eigenvalue ϱ. The dimension of the eigenspace null(A⇒ ϱI ) is called
the geometric multiplicity of the eigenvalue ϱ.
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Definition (Similar matrices)

Square matrices A and B are called similar if there exists an invertible matrix S such
that

A = SBS→1.

Similar matrices have the same characteristic polynomials and hence the same
eigenvalues (see exercise).
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Theorem

Suppose A is a square matrix with distinct eigenvalues ϱ1, . . . ,ϱn. Let v1, . . . , vn be
eigenvectors corresponding to these eigenvalues. Then v1, . . . , vn are linearly
independent.

Proof.
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Corollary

If a A ↗ Mn(C) has n distinct eigenvalues, then A is diagonalizable. That is there
exists an invertible matrix S ↗ Mn(C) such that A = SDS→1, where D is a diagonal
matrix with the eigenvalues of A in the diagonal.
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Theorem

Let A : V ↔ V be an operator with n eigenvalues. A is diagonalizable if and only if for
each eigenvalue ϱ, the geometric multiplicity of ϱ and the algebraic multiplicity of ϱ
are the same.
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Example: a diagonalizable matrix

[
1 2
8 1

]
is diagonalizable.
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Example continued
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Example continued
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Example: a matrix that is not diagonalizable

[
1 1
0 1

]
is not diagonalizable.
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