

Statistical Sciences

▶ < 토 ▶ < 토 ▶</p>

July 28, 2022

590

1/20

DoSS Summer Bootcamp Probability Module 10

Miaoshiqi (Shiki) Liu

University of Toronto

July 28, 2022

Recap

Learnt in last module:

- Markov Chain
 - Markov Property
- Discrete-time Markov Chain
 - > Transition probability
 - Chapman-Kolmogorov equation
- Continuous-time Markov Chain
 - > Transition probability
 - Chapman-Kolmogorov equation
 - Generator matrix

Outline

Poisson process

- Poisson-Gamma relationship
- ▷ Properties of Poisson Process
- Brownian motion
 - ▷ Properties of Brownian motion
 - ▷ Brownian motion with drift
 - ▷ Geometric Brownian motion

Poisson process: an example of CTMC

Poisson process

A Poisson process $\{N(t)\}_{t>0}$ with intensity $\lambda > 0$ is a collection of non-decreasing integer-valued random variables satisfying the properties that N(t+s) - N(t)• N(0) = 0:

- Independent increments: N(t) is independent of N(t+s) N(t);
- $N(t+s) N(s) \sim \textit{Poisson}(\lambda t), \quad t \ge 0, s \ge 0.$

Poisson process: an example of CTMC

S = 12

Poisson process

A Poisson process $\{N(t)\}_{t\geq 0}$ with intensity $\lambda > 0$ is a collection of non-decreasing integer-valued random variables satisfying the properties that

- N(0) = 0;
- Independent increments: N(t) is independent of N(t+s) N(t);

•
$$N(t+s) - N(s) \sim \textit{Poisson}(\lambda t), \quad t \ge 0, s \ge 0.$$

Remark:

- Easy to verify the Markov property of Poisson process;
- $N(t) \sim Poisson(\lambda t)$.

Examples:

- The number of customers arriving at a grocery store with intensity $\lambda = 5$ customers per hour; $\mathcal{N}(2) \sim \mathcal{P}_{oisson(10)}$
- The number of students coming to the TA session with intensity $\lambda = 3$ students per hour;
- The number of births in Canada with intensity $\lambda = 40$ per hour.

Examples:

- The number of customers arriving at a grocery store with intensity $\lambda = 5$ customers per hour;
- The number of students coming to the TA session with intensity $\lambda = 3$ students per hour;
- The number of births in Canada with intensity $\lambda = 40$ per hour.

The probability that more than 60 babies are born between 9 to 11 AM in Canada:

N(t+s) - N(t) ~ Poisson (As) 20 **Poisson process** 000 $N(t) = \tilde{c}$ Think about the waiting time for the event: \sim T, $t := N^{-1}(c)$ Inter-arrival time for Poisson process Consider a Poisson process $\{N(t)\}_{t>0}$ with intensity λ , and let T_1 be the time for the first event. Sequentially, let T_n denote the time between the (n-1)-th and the *n*-th event. Then $\{T_n\}_{n\geq 1}$ are i.i.d. exponential random variables with parameter λ , e.g. $\mathbb{P}(T_n < t) = 1 - e^{-\lambda t}.$ no event $P(T_1 \leq t) = P(N(t) \geq 1)$ **Proof:** $P(T_{17}t) = P(N(t) = 0) = \frac{(\lambda t)}{2}e^{-\lambda t} = e^{-\lambda t}, \quad t \ge 0,$ $P(T_2 > t | T_1 = s) = P(N(t+s) - N(s) = 0 | N(s) = 1)$ = P(N(t+s) - N(s) = 0) $= P(N(t) = 0) = e^{-\lambda t} \quad \text{is a product of the second second$ July 28, 2022 6 / 20

Arrival time for Poisson process:

Poisson-Gamma relationship

Consider a Poisson process $\{N(t)\}_{t\geq 0}$ with intensity λ , then the total time until n events is $\sum_{i=1}^{n} T_i \sim \Gamma(n, \lambda)$.

÷

$N(s) \mid N(t) = n \sim B(n, p = \frac{s}{t})$ for s < t

Consider a Poisson process $\{N(t)\}_{t\geq 0}$ with intensity λ , then for s < t, N(s) N(t) - N(s)

$$\sqrt{N(s)} \mid N(t) = n \sim B(n, p = \frac{s}{t}).$$

Proof:
$$P(N(s) = K \mid N(t) = n) \longrightarrow pmf at K.$$

$$= \frac{P(N(s) = K, N(t) = n)}{P(N(t) = n)} = \frac{P(N(s) = K, N(t) - N(s) = n-K)}{P(N(t) = n)}$$

$$= \frac{P(N(s) = K) P(N(t) - N(s) = n-K)}{P(N(t) = n)} = \frac{\frac{(\lambda s)^{k}}{k!}e^{-\lambda s} \frac{(\lambda(t-s))}{(n-k)!}e^{-\lambda t}}{\frac{(\lambda t)^{n}}{n!}e^{-\lambda t}}$$
UNIVERSITY OF $= \binom{n}{k} (\frac{s}{t})^{k} (1 - \frac{s}{t})^{n-k}$, $B(n, \frac{s}{t})$
UNIVERSITY OF $= \binom{n}{k} (\frac{s}{t})^{k} (1 - \frac{s}{t})^{n-k}$.

Superposition

6

If $\{N_1(t)\}_{t>0}$ and $\{N_2(t)\}_{t>0}$ are independent Poisson processes with intensities λ_1 and λ_2 , respectively, then $\{N(t) := N_1(t) + N_2(t)\}_{t>0}$ is also a Poisson process with intensity $\lambda_1 + \lambda_2$.

Proof:

•
$$N(0) = 0$$
 V
• Ind increments. $N(t+s) = N(t)$
 $= N_1(t+s) = N_1(t) + N_2(t+s) - N_2(t)$

• N(E) ~ Poisson (At)
$$\lambda = \lambda_1 + \lambda_2$$
. By MGF.

590 July 28, 2022 10/20

Thinning

Let $\{N(t)\}_{t\geq 0}$ be a Poisson process with intensity λ . Suppose each event is independently of type *i* with probability p_i for $i = 1, \dots, k$ with $\sum_{i=1}^k p_i = 1$. If $N_i(t)$ is the number of events of type *i* happen up to time *t*, then $\{N_i(t)\}$ is a Poisson process with rate λp_i .

Thinning

Let $\{N(t)\}_{t\geq 0}$ be a Poisson process with intensity λ . Suppose each event is independently of type *i* with probability p_i for $i = 1, \dots, k$ with $\sum_{i=1}^{k} p_i = 1$. If $N_i(t)$ is the number of events of type *i* happen up to time *t*, then $\{N_i(t)\}$ is a Poisson process with rate λp_i .

Properties of Poisson process:

Let $\{N(t)\}_{t\geq 0}$ be a Poisson process with intensity λ , then

- $T_1 \mid N(s) = 1 \sim U[0, s];$
- $N(s) \mid N(t) = n \sim B(n, p = \frac{s}{t})$ for s < t;
- Superposition:
- Thinning.

Brownian motion: an example of process with continuous time and continuous state

Brownian motion

Standard Brownian motion is a continuous-time process $\{B(t)\}_{t\geq 0}$ satisfying that

- B(0) = 0;
- Independent increments: for $0 \le q < r \le s < t$, B(t) B(s) and B(r) B(q)are independent random variables; B(t) = B(s) - B(s) ind B(s) - B(s)

28, r] [s, t]

•
$$B(t+s) - B(s) \sim \mathcal{N}(0,t)$$
, $s \ge 0, t > 0$;

• B(t) is almost surely continuous. $t \rightarrow B(t)$ B(s)

Remark: Easy to verify the Markov property.

UNIVERSITY OF TORONTO

Useful properties of Brownian motion:

Joint distribution regarding Brownian motion

For $0 < t_1 < \cdots < t_n$, $(B(t_1), B(t_2), \cdots, B(t_n))^{\top}$ follows a multivariate normal distribution.

Dura	H linear combination (C, Cn). 5 (i B(ti) ~ N()
Proof:	$\sum_{i=1}^{n} C_{i} B(t_{i}) = b_{i} B(t_{i}) + \sum_{i=1}^{n-1} b_{i+1} [B(t_{i+1}) - B(t_{i})]$
	i=1 $i=1$
	$b_1 = c_1 + c_2 - c_1 \qquad \qquad$
	$b_{i+1} = \sum_{i+1} C_i \cdot N_i(o_{i+1}) + N_i(o_{i+1$

▲□ ト ▲ □ ト ▲ 三 ト ▲ 三 ト ▲ 三 夕 Q (* July 28, 2022 13 / 20

Cov(B(s), B(t)) = min(t, s)

For a standard Brownian motion $\{B(t)_{t>0}\}$, the covariance satisfies

Cov(B(s), B(t)) = min(t, s).

assume tes (ov (B(S), B(t)) **Proof:** B(S) - B(t) $= E(B(s)B(t)) - \left[E(B(s))E(B(t))\right]$ 0 = F((B(s) - B(t) + B(t))B(t))Var(B(t)) $= E \left[(Bis) - Biti) Biti \right] + E \left[Biti \right]$ = $E[B(s)-B(t)] \cdot E(B(t)) + t$ t . ▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @ July 28, 2022

14 / 20

Cov(B(s), B(t)) = min(t, s)

For a standard Brownian motion $\{B(t)_{t\geq 0}\}$, the covariance satisfies

Cov(B(s), B(t)) = min(t, s).

Proof:

Remark: Useful technique: rearrange into independent parts

Note when

$$\left(\begin{array}{c} X\\ Y\end{array}\right) \sim \mathcal{MVN}\left(\left(\begin{array}{c} \mu_1\\ \mu_2\end{array}\right), \left[\begin{array}{cc} \sigma_1^2 & \rho\sigma_1\sigma_2\\ \rho\sigma_1\sigma_2 & \sigma_2^2\end{array}\right]\right),$$

the conditional distribution satisfies

$$X \mid Y = y \sim \mathcal{N}\left(\mu_1 + \rho \frac{\sigma_1}{\sigma_2} \left(y - \mu_2\right), \left(1 - \rho^2\right) \sigma_1^2\right).$$

▲□▶ ▲□▶ ▲■▶ ▲■▶ ▲■ シへで July 28, 2022 15 / 20

Note when

$$\left(\begin{array}{c} X\\ Y\end{array}\right) \sim \mathcal{MVN}\left(\left(\begin{array}{c} \mu_1\\ \mu_2\end{array}\right), \left[\begin{array}{cc} \sigma_1^2 & \rho\sigma_1\sigma_2\\ \rho\sigma_1\sigma_2 & \sigma_2^2\end{array}\right]\right),$$

the conditional distribution satisfies

$$X \mid Y = y \sim \mathcal{N}\left(\mu_1 + \rho \frac{\sigma_1}{\sigma_2} \left(y - \mu_2\right), \left(1 - \rho^2\right) \sigma_1^2\right).$$

Conditional distribution regarding Brownian motion

For 0 < s < t, we have

•
$$B(s) \mid B(t) = a \sim \mathcal{N}(\frac{s}{t}a, (1 - \frac{s}{t})s);$$

•
$$B(t) \mid B(s) = a \sim \mathcal{N}(a, t - s).$$

Brownian motion
Proof:
$$\begin{pmatrix} B(s) \\ B(t) \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} s & s \\ s & t \end{pmatrix} \right)$$

 $B(s) | B(t) = a \sim \mathcal{N} \left(\frac{s}{a}, \frac{s}{(1 - \frac{s}{t})s} \right)$
 $B(t) | B(s) = a \sim \mathcal{N} \left(\frac{s}{t} a, \frac{s}{(1 - \frac{s}{t})s} \right)$
 $B(t) | B(s) = a \sim \mathcal{N} \left(a, \frac{s}{t} - s \right)$
 $f = B(t) - B(s) \sim \mathcal{N} (0, t - s)$
 $B(t) | B(s) = a = B(s) | B(s) = a + B(t) - B(s) | B(s) = a$
 $B(t) | B(s) = a = B(s) | B(s) = a + B(t) - B(s) | B(s) = a$
 $\mathcal{N} (0, t - s)$
 $B(t) | B(s) = a = B(s) | B(s) = a + B(t) - B(s) | B(s) = a$
 $\mathcal{N} (0, t - s) = a + B(t) - B(s) | B(s) = a + B(t) - B(s) | B(s) = a$

16 / 20

Brownian motion with drift

For $\mu \in \mathbb{R}$ and $\sigma > 0$, the process defined by $\{D(t) = \mu t + \sigma B(t)\}$ is called the $X = \sigma z + \gamma A$. Brownian motion with drift. μ is the drift parameter and σ^2 is the variance parameter.

Remark:

- D(0) = 0;
- $D(t) \sim \mathcal{N}(\mu t, \sigma^2 t^2).$

Brownian motion with drift

For $\mu \in \mathbb{R}$ and $\sigma > 0$, the process defined by $\{D(t) = \mu t + \sigma B(t)\}$ is called the Brownian motion with drift. μ is the drift parameter and σ^2 is the variance parameter.

Remark:

- D(0) = 0;
- $D(t) \sim \mathcal{N}(\mu t, \sigma^2 t^2).$

Example:

Find the probability that Brownian motion with drift takes value between 1 and 2 at time t = 4, when $\mu = 0.6$, $\sigma^2 = 0.25$.

Geometric Brownian Motion

Let $\{D(t) = \mu t + \sigma B(t)\}$ be a Brownian motion with drift, the process $\{G(t) = G(0)e^{D(t)}\}_{t\geq 0}$ is called Geometric Brownian motion, provided that G(0) > 0.

Remark: $\mathbb{E}(G(t)) = G(0)e^{t(\mu + \frac{\sigma^2}{2})}.$

Problem Set

Problem 1: The Poisson process with intensity λ is an example of CTMC.

- Find *P*^(*t*);
- Compute the generator matrix G.

Problem 2: If $\{N(t)\}_{t\geq 0}$ is a Poisson process with $\lambda = 3$, compute the probability $\mathbb{P}(N(2) = 4, N(4) = 8)$.

Problem 3: Suppose that undergraduate students and graduate students arrive for office hours according to a Poisson process with rate $\lambda_1 = 5$ and $\lambda_2 = 3$ respectively. What is the expected time until the first student arrives?

Problem Set

Problem 4: Let $\{B(t)\}_{t\geq 0}$ be a standard Brownian motion. Show that the followings are Brownian motions.

• $\{Y(t) = B(t + \alpha) - B(\alpha)\}_{t \ge 0}$ for all $\alpha \ge 0$;

•
$$\{Y(t) = \alpha B(t/\alpha^2)\}_{t \ge 0}$$
 for all $\alpha \ge 0$.

