

Statistical Sciences

DoSS Summer Bootcamp Probability Module 5

Miaoshiqi (Shiki) Liu

University of Toronto

July 19, 2022

Recap

Learnt in last module:

- Joint and marginal distributions
 - > Joint cumulative distribution function
 - Independence of continuous random variables
- Functions of random variables
 - $\triangleright \text{ Convolutions } \qquad \mathbf{z} = \mathbf{x} + \mathbf{y}.$
 - Change of variables
 - Order statistics

Outline

• Moments

- $\triangleright~$ Expectation, Raw moments, central moments
- Moment-generating functions
- Change-of-variables using MGF
 - Gamma distribution
 - > Chi square distribution
- Conditional expectation
 - $\,\triangleright\,$ Law of total expectation
 - $\triangleright~$ Law of total variance

Intuition: How do the random variables behave on average?

min. max mean.

 $\times f_{\times}(x)$

Intuition: How do the random variables behave on average?

Expectation

Consider a random vector X and function $g(\cdot)$, the expectation of g(X) is defined by $\mathbb{E}(g(X))$, where

• Discrete random vector

$$\mathbb{E}(g(X)) = \sum_{x} g(x) p_X(x),$$

n |- a;

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x) \ dF(x) = \int_{-\infty}^{\infty} g(x) f_X(x) \ dx.$$

$$X = \begin{cases} ', P \\ o, i-p \end{cases}$$

Examples (random variable)

- $X \sim \text{Bernoulli}(p)$: $\mathbb{E}(X) = p \cdot 1 + (1-p) \cdot 0 = p$.
- $X \sim \mathcal{N}(0, 1)$: $f \neq \uparrow$ $\mathcal{M} \sigma^{*}$ $\mathbb{E}(X) = \int_{-\infty}^{\infty} X \frac{1}{\sqrt{2\pi}} exp(-\frac{x^{2}}{2}) dx = 0.$ $f_{\times}(x)$ $X \sim \mathcal{N}(\mathcal{M} \sigma^{*}).$ $Z = \frac{X - \mathcal{M}}{\sigma} \sim \mathcal{N}(\sigma - 1)$ $E(X) = \int_{-\infty}^{+\infty} (\mathcal{M} + \sigma Z) \frac{1}{\sqrt{2\pi}} exp(-\frac{Z^{2}}{2}) dZ$

= M.

Examples (random variable)

• $X \sim \text{Bernoulli}(p)$: $\mathbb{E}(X) = p \cdot 1 + (1-p) \cdot 0 = p$.

•
$$X \sim \mathcal{N}(0,1)$$
:

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi}} exp(-\frac{x^2}{2}) \ dx = 0.$$

Examples (random vector)
•
$$X_i \sim \text{Bernoulli}(p_i), i = 1, 2$$
: $\mathcal{E}\left(\begin{pmatrix} \times, \\ \times, \end{pmatrix}\right) = \begin{pmatrix} \mathcal{E}(\times,)\\ \mathcal{E}(\times,)\end{pmatrix} = \begin{pmatrix} P_i\\ P_2 \end{pmatrix}$
 $\mathbb{E}\left((X_1, X_2^2)^{\top}\right) = \left((\mathbb{E}(X_1), \mathbb{E}(X_2^2))^{\top}\right) = (p_1, p_2)^{\top}.$

▲□ ト ▲ □ ト ▲ ■ ト ▲ ■ ト ▲ ■ ト ▲ ■ か Q @
July 19, 2022 5 / 22

 $E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) \int_{-\infty}^{+\omega} \left(\int_{-\omega}^{+\omega} f_{X_i} y(X_i y) dy \right) dx$ **Properties:** $= \int_{-\infty}^{+\infty} \chi \left(\int_{-\infty}^{+\infty} f_{x,y}(x,y) dy \right) d\chi$ • $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$; • $\mathbb{E}(aX+b) = a\mathbb{E}(X) + b;$ • $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$, when X, Y are independent. $\stackrel{=}{\times} f_{\times}(x) d x$

Proof of the first property:

= F(X)

$$\begin{aligned} x + \gamma &= g\left(\binom{x}{\gamma}\right) \\ &\in (x + \gamma) = \int_{iR^2} g\left(\binom{x}{\gamma}\right) f_{x,\gamma}(x,y) \, dx \, dy \\ &= \int_{iR^2} (x + y) f_{x,\gamma}(x,y) \, dx \, dy \\ &= \int_{iR^2} x f_{x,\gamma}(x,y) \, dx \, dy + \int_{iR^2} y f_{x,\gamma}(x,y) \, dx \, dy. \end{aligned}$$

Raw moments

Consider a random vector X, the k-th (raw) moment of X is defined by $\mathbb{E}(X^k)$, where

• Discrete random vector

$$\mathbb{E}(X^k) = \sum_{x} x^k p_X(x),$$

• Continuous random vector

$$\mathbb{E}(X^k) = \int_{-\infty}^{\infty} x^k \ dF(x) = \int_{-\infty}^{\infty} x^k f_X(x) \ dx.$$

Remark:

$$k = 1$$

$$E(X^{k}) = E(X)$$

Central moments

Consider a random vector X, the k-th central moment of X is defined by $\mathbb{E}((X - \mathbb{E}(X))^k)$.

Remark:

- The first central moment is 0
- Variance is defined as the second central moment.

Variance

The variance of a random variable X is defined as

$$Var(X) = \mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2.$$

Another look at the moments:

Moment generating function (1-dimensional)

For a random variable X, the moment generating function (MGF) is defined as

$$M_{X}(t) = \mathbb{E}\left[e^{tX}\right] = 1 + t\mathbb{E}(X) + \frac{t^{2}\mathbb{E}(X^{2})}{2!} + \frac{t^{3}\mathbb{E}(X^{3})}{3!} + \dots + \frac{t^{n}\mathbb{E}(X^{n})}{n!} + \dots$$
$$g(x) = e^{tX}$$
$$E(e^{tX}) = \int_{-\infty}^{+\infty} e^{tX} f_{x}(x) dx < \infty.$$

$$N(p^{0},\sigma^{2})$$
. $E(X) = p^{2}$.
 $Var(X) = \sigma^{2}$

Another look at the moments:

Moment generating function (1-dimensional) For a random variable X, the moment generating function (MGF) is defined as $M_X(t) = \mathbb{E}\left[e^{tX}\right] = 1 + t\mathbb{E}(X) + \frac{t^2\mathbb{E}(X^2)}{2!} + \frac{t^3\mathbb{E}(X^3)}{3!} + \dots + \frac{t^n\mathbb{E}(X^n)}{n!} + \dots$ K = I $\frac{d}{dt}M_{x}(t) = 0 + E(x) + t(\dots)$ t = 0Compute moments based on MGF: Moments from MGF $\mathbb{E}(X^k) = \frac{d^k}{dt^k} M_X(t)|_{t=0}. \qquad \frac{d}{dt} \mathcal{M}_{X(t)} = \mathcal{E}(X)$

Relationship between MGF and probability distribution: MGF uniquely defines the distribution of a random variable.

Relationship between MGF and probability distribution: MGF uniquely defines the distribution of a random variable.

Example:
•
$$X \sim Bernoulli(p)$$
 $e^{\pm X} = \int_{1}^{e^{\pm}} e^{\pm}$
 $I = \int_{1}^{e^{\pm}} e^{\pm}$

$$M_X(t) = \mathbb{E}(e^{tX}) = e^0 \cdot (1-p) + e^t \cdot p = pe^t + 1 - p.$$

$$M_Y(t) = \frac{1}{3}e^t + \frac{2}{3},$$

it shows $Y \sim \text{Bernoulli}(p = \frac{1}{3})$.

Intuition: To get the distribution of a transformed random variable, it suffices to find its MGF first.

Properties:

• $Y = \underline{aX + b}, \ M_Y(t) = \underline{\mathbb{E}(e^{t(aX+b)})} = \underline{e^{tb}}M_X(at).$

• X_1, \dots, X_n independent, $Y = \sum_{i=1}^n X_i$, then $M_Y(t) = \prod_{i=1}^n M_{X_i}(t)$.

$$M_{\Upsilon'}(t) = E(e^{t\Upsilon}) = E(e^{t(\sum_{i=1}^{n} x_{i})}) = E(e^{tX_{i}+tX_{3}\cdots tX_{n}})$$
$$= E(\frac{n}{11}e^{tX_{i}})$$
$$= \frac{n}{11}E(e^{tX_{i}})$$
$$= \frac{n}{11}E(e^{tX_{i}})$$

 $M_{x}(t)$

Intuition: To get the distribution of a transformed random variable, it suffices to find its MGF first.

Properties:

- Y = aX + b, $M_Y(t) = \mathbb{E}(e^{t(aX+b)}) = e^{tb}M_X(at)$.
- X_1, \dots, X_n independent, $Y = \sum_{i=1}^n X_i$, then $M_Y(t) = \prod_{i=1}^n M_{X_i}(t)$.

Remark:

MGF is a useful tool to find the distribution of some transformed random variables, especially when

- The original random variable follows some special distribution, so that we already know / can compute the MGF.
- The transformation on the original variables is linear, say $\sum_i a_i X_i$.

Example: Gamma distribution

$$X \sim \Gamma(\alpha, \beta),$$

 $f(x; \alpha, \beta) = \frac{x^{\alpha - 1}e^{-\beta x}\beta^{\alpha}}{\Gamma(\alpha)} \quad \text{ for } x > 0 \quad \alpha, \beta > 0.$

Compute the MGF of $X \sim \Gamma(\alpha, \beta)$ (details omitted),

$$M_X(t) = \left(1 - \frac{t}{\beta}\right)^{-\alpha}$$
 for $t < \beta$, does not exist for $t \ge \beta$.

Example: Gamma distribution

$$M_X(t) = \left(1 - \frac{t}{\beta}\right)^{-\alpha}$$
 for $t < \beta$, does not exist for $t \ge \beta$

Observation:

The two parameters α, β play different roles in variable transformation.

 $M_{\gamma}(t) = \frac{1}{1-1} M_{\chi}(t) = \frac{1}{1-1} (1 - \frac{t}{\beta})^{-\alpha_{i}} = (1 - \frac{t}{\beta})^{-\Sigma_{i}}$ • Summation: If $X_i \sim \Gamma(\alpha_i, \beta)$, and X_i 's are independent, then $T = \sum_i X_i \sim \Gamma(\sum_i \alpha_i, \beta)$. If $X_i \sim Exp(\lambda)$ (this is equivalently $\Gamma((\alpha_i = 1, \beta = \lambda))$ distribution), and X_i 's are independent, then $T = \sum_{i} X_{i} \sim \Gamma(n, \lambda)$. $= (1 - \frac{2}{(\frac{p}{2})})^{-1}$ • Scaling: If $X \sim \Gamma(\alpha, \beta)$, then $Y = cX \sim \Gamma(\alpha, \frac{\beta}{c})$. = Mxict) $M_{\gamma(t)} = E(e^{t\gamma}) = E(e^{ct\chi}) = E(e^{(ct)\chi})$ Sac July 19, 2022 13/22

Example: χ^2 distribution

χ^2 distribution

If $X \sim \mathcal{N}(0, 1)$, then X^2 follows a $\chi^2(1)$ distribution.

Find the distribution of $\chi^2(1)$ distribution

• From PDF: (Module 4, Problem 2)
For X with density function
$$f_X(x)$$
, the density function of $Y = X^2$ is

$$f_Y(y) = \frac{1}{2\sqrt{y}}(f_X(-\sqrt{y}) + f_X(\sqrt{y})), \quad y \ge 0,$$

Y = X 2

this gives

$$f_{Y}(y) = \frac{1}{\sqrt{2\pi}}y^{-\frac{1}{2}}exp(-\frac{y}{2}).$$

Find the distribution of $\chi^2(1)$ distribution (continued)

 $exp(tx^2 - \frac{xL}{2})$ • From MGF: $M_Y(t) = \mathbb{E}(e^{tX^2}) = \int_{-\infty}^{\infty} exp(tx^2) \frac{1}{\sqrt{2\pi}} exp(-\frac{x^2}{2}) dx$ $=\int_{-\infty}^{\infty}\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x^2}{2(1-2t)^{-1}}\right) dx$ $=(1-2t)^{-\frac{1}{2}}\int_{-\infty}^{\infty}\mathcal{N}(0,(1-2t)^{-1})\,dx,\quad t<\frac{1}{2}$ $=(1-2t)^{-rac{1}{2}},\quad t<rac{1}{2}.$

By observation, $\chi^2(1) = \Gamma(\frac{1}{2}, \frac{1}{2}).$

Generalize to the $\chi^2(d)$ distribution

$\chi^2(d)$ distribution If $X_i, i = 1, \dots, d$ are i.i.d $\mathcal{N}(0, 1)$ random variables, then $\sum_{i=1}^{d} X_i^2 \sim \chi^2(d)$. By properties of MGF, $\chi^2(d) = \Gamma(\frac{d}{2}, \frac{1}{2})$, and this gives the PDF of $\chi^2(d)$ distribution $\gamma'(1) = T(\frac{1}{2}, \frac{1}{2})$ $d^{d} = 1 - \frac{x}{2}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで July 19, 2022

16 / 22

$$\frac{x^{\frac{1}{2}-1}e^{-\frac{1}{2}}}{2^{\frac{d}{2}}\Gamma(\frac{d}{2})} \quad \text{for } x > 0.$$

From expectation to conditional expectation:

How will the expectation change after conditioning on some information?

 $g(\mathbf{X})$ $E(g(\mathbf{X})) = constant$

$$E(g(x)|Y) = f(Y)$$

From expectation to conditional expectation:

How will the expectation change after conditioning on some information?

Conditional expectation

If X and Y are both discrete random vectors, then for function $g(\cdot)$,

• Discrete:

$$\mathbb{E}(g(X) \mid Y = y) = \sum_{x} g(x) \underbrace{p_{X \mid Y = y}(x)}_{x} = \sum_{x} g(x) \frac{P(X = x, Y = y)}{P(Y = y)}$$

• Continuous:

$$\mathbb{E}(g(X) \mid \underline{Y = y}) = \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y) dx = \underbrace{\frac{1}{f_Y(y)}}_{-\infty} \int_{-\infty}^{\infty} g(x) f_{X,Y}(x,y) dx.$$

Properties:

.

• If X and Y are independent, then

$$\mathbb{E}(X \mid Y = y) = \mathbb{E}(X).$$
• If X is a function of Y, denote $X = g(Y)$, then
$$Y = g(Y)$$

$$\mathbb{E}(X \mid Y = y) = g(y).$$

$$Y = y \Rightarrow X = g'(y).$$
Sketch of proof:
$$C^{iscrefe.} \times f, \text{ ind.}$$

$$E(x \mid Y = y) = \int_{x}^{\infty} x \int_{x/Y = y}^{x} (x) = \int_{x}^{\infty} x f_{x} (x) = E(x),$$

$$E(x \mid Y = y) = \int_{x}^{\infty} x \int_{x/Y = y}^{x} (y) = \int_{x}^{\infty} x f_{x} (x) = E(x),$$

$$E(x \mid Y = y) = \int_{x}^{\infty} x \int_{x/Y = y}^{y} = \int_{x}^{\infty} x f_{x} (x) = E(x),$$

$$F(x = x, T = y) = \int_{x}^{\infty} x \int_{y/Y = y}^{y} = \int_{y/Y = y}^{y} x \int_{y/Y = y}^{y} f(T = y)$$

18/22

Remark:

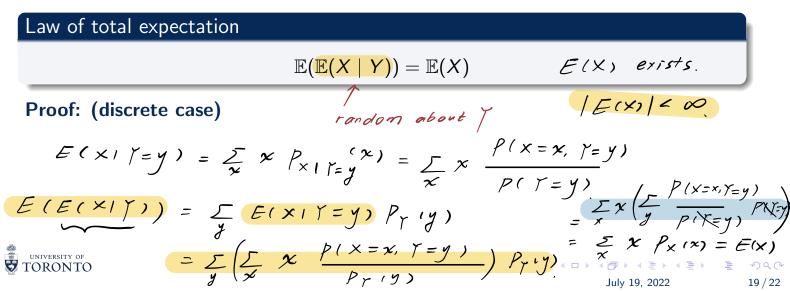
By changing the value of Y = y, $\mathbb{E}(X \mid Y = y)$ also changes, and $\mathbb{E}(X \mid Y)$ is a random variable (the randomness comes from Y).

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ シ ? Q () July 19, 2022 19 / 22

Remark:

By changing the value of Y = y, $\mathbb{E}(X \mid Y = y)$ also changes, and $\mathbb{E}(X \mid Y)$ is a random variable (the randomness comes from Y).

Total expectation and conditional expectation



Total variance and conditional variance

Conditional variance

$$Var(Y \mid X) = \mathbb{E}(Y^2 \mid X) - (\mathbb{E}(Y \mid X))^2$$

$$Var(\gamma) = E(\gamma^2) - (E(\gamma))^2$$

Total variance and conditional variance

Conditional variance

$$Var(Y \mid X) = \mathbb{E}(Y^2 \mid X) - (\mathbb{E}(Y \mid X))^2.$$

Law of total variance

÷

$$Var(Y) = \mathbb{E}[Var(Y | X)] + Var(\mathbb{E}[Y | X]), \qquad \begin{cases} Var(Y) \in UB \\ E(Y^2) \leq UB \end{cases}$$
Remark: $Var(Y) = E(Y^2) - (E(Y))^2$.

$$E(Var(Y | X)) = E(E(Y^2 | X)) - E((E(Y | X))^2)$$

$$+ = E(Y^2) - E((E(Y | X))^2)$$

$$Var(E(Y | X)) = E((E(Y | X))^2) - (E(E(Y | X)))^2$$

$$Var(E(Y | X)) = E((E(Y | X))^2) - (E(Y | X)))^2$$

$$= E((E(Y | X))^2) - (E(Y))^2$$

$$= E((E(Y | X))^2) - (E(Y))^2$$

Problem Set

Problem 1: Prove that $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ when X and Y are independent. (Hint: simply consider the continuous case, use the independent property of the joint pdf)

Problem 2: For $X \sim Uniform(a, b)$, compute $\mathbb{E}(X)$ and Var(X).

Problem 3: Determine the MGF of $X \sim \mathcal{N}(\mu, \sigma^2)$. (Hint: Start by considering the MGF of $Z \sim \mathcal{N}(0, 1)$, and then use the transformation $X = \mu + \sigma Z$)

Problem Set

Problem 4: The citizens of Remuera withdraw money from a cash machine according to X = 50, 100, 200 with probability 0.3, 0.5, 0.2, respectively. The number of customers per day has the distribution $N \sim Poisson(\lambda = 10)$. Let $T_N = X_1 + X_2 + \cdots + X_N$ be the total amount of money withdrawn in a day, where each X_i has the probability above, and X_i 's are independent of each other and of N.

- Find $\mathbb{E}(T_N)$,
- Find $Var(T_N)$.

