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Recap

Learnt in last module:

• Moments

. Expectation, Raw moments, central moments

. Moment-generating functions

• Change-of-variables using MGF

. Gamma distribution

. Chi square distribution

• Conditional expectation

. Law of total expectation

. Law of total variance
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Outline

• Covariance

. Covariance as an inner product

. Correlation

. Cauchy-Schwarz inequality

. Uncorrelatedness and Independence

• Concentration

. Markov’s inequality

. Chebyshev’s inequality

. Cherno↵ bounds
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Covariance

Recall the property of expectation:

E(X + Y ) = E(X ) + E(Y ).

What about the variance?

Var(X + Y ) = E(X + Y � E(X )� E(Y ))
2

= E(X � E(X ))
2
+ E(Y � E(Y ))

2
+ 2E((X � E(X ))(Y � E(Y )))

= Var(X ) + Var(Y ) + 2E((X � E(X ))(Y � E(Y )))| {z }
?
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Covariance

Intuition:

A measure of how much X ,Y change together.

Covariance
For two jointly distributed real-valued random variables X ,Y with finite second

moments, the covariance is defined as

Cov(X ,Y ) = E((X � E(X ))(Y � E(Y ))).

Simplification:

Cov(X ,Y ) = E(XY )� E(X )E(Y ).
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Covariance

Properties:

• Cov(X ,X ) = Var(X ) � 0;

• Cov(X , a) = 0, a is a constant;

• Cov(X ,Y ) = Cov(Y ,X );

• Cov(X + a,Y + b) = Cov(X ,Y );

• Cov(aX , bY ) = abCov(X ,Y ).

Corollary about variance:

Var(aX + b) = a2Var(X ).
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Covariance

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use R here as an

example): < ·, · >: V ⇥ V ! R that satisfies:

• Symmetry: < x , y >=< y , x >;

• Linearity in the first argument: < ax + by , z >= a < x , z > +b < y , z >;

• Positive-definiteness: < x , x >� 0, and < x , x >= 0 , x = 0

Remark:

Covariance defines an inner product over the quotient vector space obtained by taking

the subspace of random variables with finite second moment and identifying any two

that di↵er by a constant.
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Covariance

Properties inherited from the inner product space

Recall in Euclidean vector space:

• < x , y >= x>y =
Pn

i=1 xiyi ;

• ||x ||2 =
p
< x , x >;

• < x , y >= ||x ||2 · ||y ||2 cos(✓).

Respectively:

• < X ,Y >= Cov(X ,Y );

• ||X || =
p

Var(X );
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Covariance

A substitute for cos(✓):

Correlation
For two jointly distributed real-valued random variables X ,Y with finite second

moments, the correlation is defined as

Corr(X ,Y ) = ⇢XY =
Cov(X ,Y )p

Var(X ) · Var(Y )
.

Uncorrelatedness:

X ,Y uncorrelated , Corr(X ,Y ) = 0.
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Covariance

Cauchy-Schwarz inequality

|Cov(X ,Y )| 
p

Var(X )Var(Y ).

Proof:
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Covariance

Uncorrelatedness and Independence:

Observe the relationship:

Corr(X ,Y ) = 0 , Cov(X ,Y ) = 0 , E(XY ) = E(X )E(X )

Conclusions:

• Independence ) Uncorrelatedness

• Uncorrelatedness 6=) Independence

Remark:

Independence is a very strong assumption/property on the distribution.
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Covariance

Special case: multivariate normal

Multivariate normal

A k-dimensional random vector X = (X1,X2, · · · ,Xk)
>
follows a multivariate normal

distribution X ⇠ N (µ,⌃), if

fX(x1, . . . , xk) =
exp

�
�1

2(x� µ)T⌃�1
(x� µ)

�
p

(2⇡)k |⌃|
,

where µ = E[X] = (E[X1],E[X2], . . . ,E[Xk ])
>
, and [⌃]i ,j = ⌃i ,j = Cov(Xi ,Xj).

Observation:

The distribution is decided by the covariance structure.
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Covariance

Xi , i = 1, · · · k independent , fX(x1, . . . , xk) =
kY

i=1

fXi (xi )

, ⌃ = Ik , Cov(Xi ,Xj) = 0, i 6= j .

Example:

• Corr(X ,Y ) = 0
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Covariance

Xi , i = 1, · · · k independent , fX(x1, . . . , xk) =
kY

i=1

fXi (xi )

, ⌃ = Ik , Cov(Xi ,Xj) = 0, i 6= j .

Example:

• Corr(X ,Y ) = 0.7
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Concentration

Measures of a distribution:

• E(X k
), E(X ),Var(X );

• Cov(X ,Y ) and Corr(X ,Y ).

Tail probability: P(|X | > t)

�3 �2 0 2 3

x

f(
x
)

Figure: Probability density function of N (0, 1)
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Concentration

Concentration inequalities:

• Markov inequality

• Chebyshev inequality

• Cherno↵ bounds

Markov inequality

Let X be a random variable that is non-negative (almost surely). Then, for every

constant a > 0,

P(X � a)  E(X )

a
.

Proof:

July 21, 2022 15 / 19



Concentration

Concentration inequalities:

• Markov inequality

• Chebyshev inequality

• Cherno↵ bounds

Markov inequality

Let X be a random variable that is non-negative (almost surely). Then, for every

constant a > 0,

P(X � a)  E(X )

a
.

Proof:

July 21, 2022 15 / 19

continuous

E'x fit x fxixidx f y x dx tf d

Sexo.PT iax
ixzajafxixsdx

aPlX a



Concentration

Markov inequality (continued)

Let X be a random variable, then for every constant a > 0,

P(|X | � a)  E(|X |)
a

.

A more general conclusion:

Markov inequality (continued)

Let X be a random variable, if �(x) is monotonically increasing on [0,1), then for

every constant a > 0,

P(|X | � a) = P(�(|X |) � �(a))  E(�(|X |))
�(a)

.
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Concentration

Chebyshev inequality

Let X be a random variable with finite expectation E(X ) and variance Var(X ), then

for every constant a > 0,

P(|X � E(X )| � a)  Var(X )

a2
,

or equivalently,

P(|X � E(X )| � a
p

Var(X ))  1

a2
.

Example:

Take a = 2,

P(|X � E(X )| � 2

p
Var(X ))  1

4
.
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Concentration

Cherno↵ bound (general)

Let X be a random variable, then for t � 0,

P(X � a) = P(et·X � et·a) 
E
⇥
et·X

⇤

et·a
,

and

P(X � a)  inf
t�0

E
⇥
et·X

⇤

et·a
.

Remark:

This is especially useful when considering X =
Pn

i=1 Xi with Xi ’s independent,

P(X � a)  inf
t�0

E
⇥Q

i e
t·Xi

⇤

et·a
= inf

t�0
e�t·a

Y

i

E
h
et·Xi

i
.
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Problem Set

Problem 1: Let

fX ,Y (x , y) =

(
2 0  y  x  1

0 otherwise
,

compute Cov(X ,Y ).

Problem 2: For X ⇠ N (0, 1), compute the Cherno↵ bound.
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