UNIVERSITY OF
TORONTO

Statistical Sciences

DoSS Summer Bootcamp Probability Module 7

Miaoshiqi (Shiki) Liu

University of Toronto
July 24, 2022

Recap

Learnt in last module:

- Covariance
\triangleright Covariance as an inner product
\triangleright Correlation
\triangleright Cauchy-Schwarz inequality
\triangleright Uncorrelatedness and Independence
- Concentration
\triangleright Markov's inequality
\triangleright Chebyshev's inequality
\triangleright Chernoff bounds

Outline

- Stochastic convergence
\triangleright Convergence in distribution
\triangleright Convergence in probability
\triangleright Convergence almost surely
\triangleright Convergence in L^{p}
\triangleright Relationship between convergences

Stochastic Convergence

Recall: Convergence

Convergence of a sequence of numbers
A sequence a_{1}, a_{2}, \cdots converges to a limit a if

$$
\frac{\lim _{n \rightarrow \infty} a_{n}=a .}{N(\epsilon) \text { such that }}
$$

$$
\left|a_{n}-a\right|<\epsilon, \quad \forall n>N(\epsilon)
$$

Stochastic Convergence

Recall: Convergence

Convergence of a sequence of numbers
A sequence a_{1}, a_{2}, \cdots converges to a limit a if

$$
\lim _{n \rightarrow \infty} a_{n}=a
$$

That is, for any $\epsilon>0$, there exists an $N(\epsilon)$ such that

$$
\left|a_{n}-a\right|<\epsilon, \quad \forall n>N(\epsilon)
$$

Example: $a_{n}=\frac{1}{n}, \forall \epsilon>0$, take $N(\epsilon)=\left\lceil\frac{1}{\epsilon}\right\rceil$, then for $n>N(\epsilon)$,

$$
\begin{aligned}
& \underbrace{\left|a_{n}-0\right|}=a_{n}<\epsilon, \quad \lim _{n \rightarrow \infty} a_{n}=0 . \\
& \frac{1}{n}<\varepsilon \quad \frac{1}{n}<\frac{1}{N(\varepsilon)} \leqslant \varepsilon .
\end{aligned}
$$

TORONTO

$$
N(c)=r \frac{1}{\varepsilon} \tau \geqslant \frac{1}{\varepsilon}
$$

Stochastic Convergence

- Capture the property of a series as $n \rightarrow \infty$;
- The limit is something where the series concentrate for large n;
- $\left|a_{n}-a\right|$ quantifies the closeness of the series and the limit.

Stochastic Convergence

Observation: closeness of random variables

Sample mean of i.i.d. random variables

For i.i.d. random variables $X_{i}, i=1, \cdots, n$ with $\mathbb{E}\left(X_{i}\right)=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, then for the sample mean $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$,

$$
\mathbb{E}(\bar{X})=\mu, \quad \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}
$$

Proof: $\quad E(\bar{x})=E\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(x_{i}\right)=\mu$

$$
\begin{aligned}
\operatorname{Var}(\bar{x})=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right) & =\left(\frac{1}{n}\right)^{2} \sum_{i=1}^{n} \operatorname{Var}\left(x_{i}\right) \\
& =\frac{1}{n^{2}} \times n \sigma^{2}=\frac{\sigma^{2}}{n}
\end{aligned}
$$

Stochastic Convergence

Example:

Further suppose $X_{i}, i=1, \cdots, n$ i.i.d. with distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$,
so we can draw the probability density plot of \bar{X}.

Stochastic Convergence

Example:

Further suppose $X_{i}, i=1, \cdots, n$ i.i.d. with distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$, so we can draw the probability density plot of \bar{X}.

Figure: Probability density curve of sample mean of normal distribution

Stochastic Convergence

Intuition:

- Series of numbers $a_{n} \Rightarrow$ Series of random variables X_{n};
- Limit $a \quad \Rightarrow$ Limit X; (an-a)
- How to quantify the closeness? $\left(\left|X_{n}-X\right|\right.$? $)$

Stochastic Convergence

Intuition:

- Series of numbers $a_{n} \Rightarrow$ Series of random variables X_{n};
- Limit $a \quad \Rightarrow \quad$ Limit X;
- How to quantify the closeness? $\left(\left|X_{n}-X\right|\right.$? $)$

Pointwise convergence / Sure convergence

Suppose random variables X_{n} and X are defined over the same probability space, then we say X_{n} converges to X pointwise if

$$
\lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega), \quad \forall \omega \in \Omega
$$

Stochastic Convergence

Intuition:

- Series of numbers $a_{n} \Rightarrow$ Series of random variables X_{n};
- Limit $a \quad \Rightarrow \quad$ Limit X;
- How to quantify the closeness? $\left(\left|X_{n}-X\right|\right.$? $)$

Pointwise convergence / Sure convergence

Suppose random variables X_{n} and X are defined over the same probability space, then we say X_{n} converges to X pointwise if

$$
\lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega), \quad \forall \omega \in \Omega
$$

Remark:

Incorporate probability measure in some sense.

Stochastic Convergence

$$
x_{n}, x
$$

Alternatives of describing the closeness:

- Utilize CDF: $F_{X_{n}}(x)-F_{X}(x) ; \quad P(X \leq x)=\mu\left((-\infty, x J)=F_{X}(x)\right.$
- Utilize probability of an event: $\mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)$; $\quad\left|X_{n}-x\right|>\varepsilon$
- Utilize the probability over all $\omega: \mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right)$;
- Utilize mean/moments: $\mathbb{E}\left|X_{n}-X\right|^{p}$.

Stochastic Convergence

Convergence in distribution
A sequence X_{1}, X_{2}, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if

$$
\text { x. Bernoulli } \begin{aligned}
\lim _{n \rightarrow \infty} F_{n}(x) & =F(x) \\
x & \neq 0,1
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x), \quad \lim _{n \rightarrow \infty} F_{n}(x)=F(x)
$$

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_{n}(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_{n} and X, respectively.

Notation:

$X_{n} \xrightarrow{d} X, \quad X_{n} \xrightarrow{\mathcal{D}} X, \quad X_{n} \Rightarrow X$.

Stochastic Convergence

Convergence in distribution

A sequence X_{1}, X_{2}, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x)
$$

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_{n}(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_{n} and X, respectively.

Notation:

$X_{n} \xrightarrow{d} X, \quad X_{n} \xrightarrow{\mathcal{D}} X, \quad X_{n} \Rightarrow X$.
Remark:

$$
F_{n}(x)=p\left(x_{n} \leqslant x\right)
$$

X_{n} and X do not need to be defined on the same probability space.

Stochastic Convergence
CDF right
Example:
Let $X_{n}=Z+\frac{1}{n}$, where $\underline{Z \sim \mathcal{N}(0,1)}$, then

- $X_{n} \xrightarrow{d} Z$,
- $X_{n} \xrightarrow{d}-Z$,
- $X_{n} \xrightarrow{d} Y, Y \sim \mathcal{N}(0,1)$.

$$
\lim _{y \downarrow x} F(y)=F(x)
$$

$$
F(x)=P(x \leq x)
$$

Proof: $\quad F_{x_{n}}(x)=p\left(x_{n} \leq x\right)=p\left(z+\frac{1}{n} \leq x\right)=p\left(z \leq x-\frac{1}{n}\right)$

$$
x_{n} \xrightarrow{d} x .
$$

$-2 \sim N(0,1)$
 $=F_{2}(\underbrace{}_{n \rightarrow \infty} \underbrace{\Delta-\frac{1}{n}})$.
$F_{z}(x)$

$$
F_{-2}(x)=F_{2}(x)
$$

$$
F_{x n}(x)=F_{2}\left(x-\frac{1}{h}\right)=F_{-2}\left(x-\frac{1}{n}\right)
$$

$$
=F y\left(x-\frac{1}{n}\right)
$$

Stochastic Convergence

Convergence in probability

A sequence X_{n} of random variables converges in probability towards the random variable X if for all $\epsilon>0$,

$$
\left|a_{n}-a\right|<\varepsilon \quad n \rightarrow \infty
$$

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0 .
$$

Notation: $X_{n} \xrightarrow{p} X, \quad X_{n} \xrightarrow{P} X$.

$$
\lim _{n \rightarrow \infty} F_{x_{n}(x)}=F^{F_{x}(x)} p(x \leq x)
$$

Remark: $\left\{\omega:\left|x_{n}(w)-X(w)\right|>\varepsilon\right\}$

$$
P\left(x_{n} \leq x\right)
$$

X_{n} and X need to be defined on the same probability space.

$$
P\left(\left\{w: x_{n}(w) \leq x\right\}\right)
$$

Stochastic Convergence
Examples: $y_{n}(w)=z(w)+\frac{1}{n}$.

- Let $X_{n}=\underline{Z+\frac{1}{n}}$, where $\underline{Z \sim \mathcal{N}(0,1)}$, then $X_{n} \xrightarrow{P} Z$.

Proof: $\quad \forall \varepsilon>0$.

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} P\left(\left|x_{n}-2\right|>\varepsilon\right)=0 \\
\forall \varepsilon>0
\end{array}
$$

$$
P\left(\left|x_{n}-z\right|>\varepsilon\right)=P(\underbrace{\left.\frac{1}{\Delta}\right\}}_{\left.\substack{\frac{1}{n} \\ \Delta} \frac{1}{n}>\varepsilon\right)} .
$$

- Let $X_{n}=\underbrace{Z+Y_{n}}$, where $Z \sim \mathcal{N}(0,1), \underbrace{\mathbb{E}\left(\left|Y_{n}\right|\right)^{\Delta}=\frac{1}{n}}$, then $X_{n} \xrightarrow{P} Z$.

Proof: $\quad \forall \varepsilon>0$

$$
\begin{aligned}
& P\left(\left|x_{n}-z\right|>\varepsilon\right) \\
& =P\left(\left|Y_{n}\right|>\varepsilon\right) \leqslant \frac{E^{\prime} Y_{n} \mid}{\varepsilon}=\frac{1}{n \varepsilon} \longrightarrow 0 .
\end{aligned}
$$

Stochastic convergence

Convergence almost surely

A sequence X_{n} of random variables converges almost surely or almost everywhere or with probability 1 or strongly towards X means that

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=\mathbb{P}\left(\omega \in \Omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right)=1
$$

Notation: $X_{n} \xrightarrow{\text { a.s. }} X$.
Remark:
X_{n} and X need to be defined on the same probability space.

Stochastic convergence
Examples:

- Let $X_{n}=Z+\frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then $X_{n} \xrightarrow{\text { a.s. }} Z$.

Proof: $P\left(\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=z(\omega)\right\}\right)$

$$
\begin{aligned}
& =P\left(\left\{\omega: \lim _{n \rightarrow \infty} z(w)+\frac{1}{n}=z(w)\right\}\right) \\
& =P\left(\left\{w: \lim _{n \rightarrow \infty} \frac{1}{n}=0\right\}\right)=1 .
\end{aligned}
$$

- Let $X_{n}=Z+Y_{n}$, where $Z \sim \mathcal{N}(0,1), \mathbb{E}\left(\left|Y_{n}\right|\right)=\frac{1}{n}$, do we have $X_{n} \xrightarrow{\text { a.s. }} Z$?

Proof: $\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=z(\omega)\right\}$

$$
Y_{n}=\text { Bernoulli } \cdot\left(\frac{1}{n}\right)
$$

$$
=\left\{w=\lim _{n \rightarrow \infty} Z(w)+Y_{n}(w)=Z(w)\right\}
$$

$$
=\left\{w=\lim _{n \rightarrow \infty} Y n(w)=0\right\} .
$$

$$
\sum_{n=1}^{\infty} p\left(Y_{n}=1\right)=Y_{n}=11,
$$

Stochastic convergence

Convergence in L^{p}
A sequence $\left\{X_{n}\right\}$ of random variables converges in L_{p} to a random variable $X, p \geq 1$, if

$$
\lim _{n \rightarrow \infty} \underline{\mathbb{E}\left|X_{n}-X\right|^{p}}=0
$$

Notation: $X_{n} \xrightarrow{L^{p}} X$.
Remark:
X_{n} and X need to be defined on the same probability space.

Stochastic convergence
Examples:

- Let $X_{n}=Z+\frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then $X_{n} \xrightarrow{L^{p}} Z$.

Proof: $E\left|x_{n}-2\right|^{p}=E \left\lvert\, \underbrace{\left.\frac{1}{n}\right|^{p}}=\left(\frac{1}{n}\right)^{p} \rightarrow 0\right.$.

- Let $X_{n}=Z+Y_{n}$, where $Z \sim \mathcal{N}(0,1), \underbrace{\mathbb{E}\left(\left|Y_{n}\right|^{p}\right)=\frac{1}{n}}$, then $X_{n} \xrightarrow{L^{p}} Z$.

Proof:

$$
E\left|x_{n}-2\right|^{p}=E\left|Y_{n}\right|^{p}=\frac{1}{n} \longrightarrow 0 \quad n \rightarrow \infty .
$$

Stochastic convergence

Relationship between convergences (on complete probability space):

Figure: relationship between convergences

Stochastic convergence

Highlights:

$$
\begin{aligned}
& \left\{w=\left|x_{n}-C_{0}^{c}\right|>\varepsilon\right\} \\
& =\left\{w: x_{n}-c>\varepsilon\right\} \cup\left\{w: x_{n}-c<-\varepsilon\right\}
\end{aligned}
$$

- Almost sure convergence implies convergence in probability:

$$
X_{n} \xrightarrow{\text { a.s. }} X \quad \Rightarrow \quad X_{n} \xrightarrow{P} X ;
$$

- Convergence in probability implies convergence in distribution:

$$
X_{n} \xrightarrow{P} X \quad \Rightarrow \quad X_{n} \xrightarrow{d} X ;
$$

- If X_{n} converges in distribution to a constant c, then X_{n} converges in probability to c :

$$
\left\{u:\left|x_{n}-x\right|>\varepsilon\right\}
$$

$$
X_{n} \xrightarrow{d} c \Rightarrow X_{n} \xrightarrow{P} c, \quad \text { provided } c \text { is a constant. }
$$

$$
x=c .
$$

Problem Set

Problem 1: Prove that on a complete probability space, if $X_{n} \xrightarrow{L^{p}} X$, then $X_{n} \xrightarrow{P} X$. (Hint: use Markov's inequality)

Problem 2: Let X_{1}, \cdots, X_{n} be i.i.d. random variables with $\operatorname{Bernoulli}(p)$ distribution, and $X \sim \operatorname{Bernoulli}(p)$ is defined on the same probability space, independent with X_{i} 's. Does X_{n} converge in probability to X ?

Problem 3: Give an example where X_{n} converges in distribution to X, but not in probability.

