UNIVERSITY OF
TORONTO

Statistical Sciences

DoSS Summer Bootcamp Probability Module 8

Miaoshiqi (Shiki) Liu

University of Toronto
July 27, 2022

Recap

Learnt in last module:

- Stochastic convergence
\triangleright Convergence in distribution
\triangleright Convergence in probability
\triangleright Convergence almost surely
\triangleright Convergence in L^{p}
\triangleright Relationship between convergences

Outline

- Convergence of functions of random variables
\triangleright Slutsky's theorem
\triangleright Continuous mapping theorem
- Laws of large numbers
\triangleright WLLN
\triangleright SLLN
\triangleright Glivenko-Cantelli theorem
- Central limit theorem

Convergence of functions of random variables

Recall: Stochastic convergence If $X_{n} \rightarrow X, Y_{n} \rightarrow Y$ in some sense, how is the limiting property of $f\left(X_{n}, Y_{n}\right)$? an $X_{n}+b_{n} Y_{n}$

Convergence of functions of random variables

Recall: Stochastic convergence If $X_{n} \rightarrow X, Y_{n} \rightarrow Y$ in some sense, how is the limiting property of $f\left(X_{n}, Y_{n}\right)$?

Convergence of functions of random variables (a.s.)
Suppose the probability space is complete, if $X_{n} \xrightarrow{\text { a.s. }} X, Y_{n} \xrightarrow{\text { a.s. }} Y$, then for any real numbers a, b,

- $a X_{n}+b Y_{n} \xrightarrow{\text { a.s. }} a X+b Y$;
- $X_{n} Y_{n} \xrightarrow{\text { a.s. }} X Y$.

Remark:

$$
\left\{w: \lim _{n \rightarrow \infty} a X_{n}(w)+b Y n(w)=a X(w)+b Y(w)\right\}
$$

- Still require all the random variables to be defined on the same probability space

Convergence of functions of random variables

Convergence of functions of random variables (probability)
Suppose the probability space is complete, if $X_{n} \xrightarrow{P} X, Y_{n} \xrightarrow{P} Y$, then for any real numbers a, b,

- $a X_{n}+b Y_{n} \xrightarrow{P} a X+b Y ;$
- $X_{n} Y_{n} \xrightarrow{P} X Y$.

Remark:

- Still require all the random variables to be defined on the same probability space

Convergence of functions of random variables

Convergence of functions of random variables $\left(L^{p}\right)$
Suppose the probability space is complete, if $X_{n} \xrightarrow{L^{p}} X, Y_{n} \xrightarrow{L^{p}} Y$, then for any real numbers a, b,

- $a X_{n}+b Y_{n} \xrightarrow{L^{p}} a X+b Y ;$

$$
x_{n} Y_{n} \xrightarrow{L p} x Y ?
$$

Remark:

$$
E 1 x_{n}-x 1^{p} \longrightarrow 0 \quad n \rightarrow \infty
$$

$$
E\left|x_{n}\right|^{p}<\infty
$$

- Still require all the random variables to be defined on the same probability space

$$
\begin{array}{cl}
X_{n} & E\left|X_{n}\right|<\infty \\
Y_{n} & E\left|Y_{n}\right|<\infty \\
X_{n} Y_{n} . & E\left|X_{n} Y_{n}\right|<\infty ?
\end{array}
$$

Convergence of functions of random variables

Remark: Convergence in distribution is different.

Slutsky's theorem
If $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{P} c(c$ is a constant $)$, then

- $X_{n}+Y_{n} \xrightarrow{d} X+c$;

- $X_{n} Y_{n} \xrightarrow{d} c X$;
- $X_{n} / Y_{n} \xrightarrow{d} X / c$, where $c \neq 0$.

Convergence of functions of random variables

Remark: Convergence in distribution is different.

Slutsky's theorem

If $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{P} c(c$ is a constant $)$, then

- $X_{n}+Y_{n} \xrightarrow{d} X+c$;
- $X_{n} Y_{n} \xrightarrow{d} c X$;
- $X_{n} / Y_{n} \xrightarrow{d} X / c$, where $c \neq 0$.

Remark:

- The theorem remains valid if we replace all the convergence in distribution with convergence in probability.

Convergence of functions of random variables

Remark: The requirement that $Y_{n} \xrightarrow{P} c(c$ is a constant $)$ is necessary.

Convergence of functions of random variables

Remark: The requirement that $Y_{n} \xrightarrow{P} c(c$ is a constant $)$ is necessary.
Examples:
$X_{n} \sim \mathcal{N}(0,1), Y_{n}=-X n$, then

$$
\begin{array}{ll}
x_{1} & y_{1}=-x_{1} \\
x_{2} & y_{2}=-x_{2}
\end{array}
$$

- $X_{n} \xrightarrow{d} Z \sim \mathcal{N}(0,1), Y_{n} \xrightarrow{d} Z \sim \mathcal{N}(0,1)$;
- $X_{n}+Y_{n} \xrightarrow{d} 0 ; \quad X_{n}+Y_{n} \xrightarrow{d} 22$.
- $X_{n} Y_{n}=-X_{n}^{2} \xrightarrow{d}-\chi^{2}(1)$;

$$
\longrightarrow \quad x_{n} y_{n} \xrightarrow{d} z^{2} \sim x^{2}(1)
$$

- $X_{n} / Y_{n}=-1$.

$$
\longrightarrow x_{n} / y_{n} \xrightarrow{d} 2 / 2=1 \quad x .
$$

Convergence of functions of random variables

Continuous mapping theorem
Let X_{n}, X be random variables, if $g(\cdot): \mathbb{R} \rightarrow \mathbb{R}$ satisfies $\mathbb{P}\left(X \in D_{g}\right)=0$, then

- $X_{n} \xrightarrow{\text { a.s. }} X \Rightarrow g\left(X_{n}\right) \xrightarrow{\text { a.s. }} g(X)$;

$$
x_{n} Y_{n} \xrightarrow{L^{p}} x y .
$$

- $X_{n} \xrightarrow{P} X \Rightarrow g\left(X_{n}\right) \xrightarrow{P} g(X)$;
- $X_{n} \xrightarrow{d} X \Rightarrow g\left(X_{n}\right) \xrightarrow{d} g(X)$;

$$
g\left(x_{n}\right)=x_{n}^{2}
$$

where $\underline{D_{g}}$ is the set of discontinuity points of $g(\cdot)$.

Convergence of functions of random variables

Continuous mapping theorem

Let X_{n}, X be random variables, if $g(\cdot): \mathbb{R} \rightarrow \mathbb{R}$ satisfies $\mathbb{P}\left(X \in D_{g}\right)=0$, then

- $X_{n} \xrightarrow{\text { a.s. }} X \Rightarrow g\left(X_{n}\right) \xrightarrow{\text { a.s. }} g(X)$;
- $X_{n} \xrightarrow{P} X \Rightarrow g\left(X_{n}\right) \xrightarrow{P} g(X)$;
- $X_{n} \xrightarrow{d} X \Rightarrow g\left(X_{n}\right) \xrightarrow{d} g(X)$;
where D_{g} is the set of discontinuity points of $g(\cdot)$.

Remark:

- If $g(\cdot)$ is continuous, then ...
- If X is a continuous random variable, and D_{g} only include countably many points, then ...

$$
P(x=x)=0 . \quad D g=\left\{x_{1}, x_{2} \ldots x \ldots\right\}
$$

Tonvisavir of
TORONTO

$$
P(x \in D g)=\sum_{i=1}^{\infty} P \underbrace{P\left(x=x_{i}\right.})=0
$$

Law of large numbers

$$
\mu_{\lambda}=E\left(x_{i}\right) \quad E\left(\left|x_{i}\right|\right)<\infty .
$$

Weak Law of Large Numbers (WLLN)
If $X_{1}, X_{2}, \cdots, X_{n}$ are i.i.d. random variables, $\mu=\mathbb{E}\left(\left|X_{i}\right|\right)<\infty$, then

$$
\begin{aligned}
& \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n} \xrightarrow{P} \mu . \quad \bar{x}-\mu \xrightarrow{P} 0 . \\
& \bar{x}-\mu=\frac{\sum_{i=1}^{n} x_{i}-n \mu}{n} \xrightarrow{p} 0 .
\end{aligned}
$$

Remark:
A more easy-to-prove version is the L^{2} weak law, where an additional assumption $\operatorname{Var}\left(X_{i}\right)<\infty$ is required.
Sketch of the proof:

$$
\operatorname{Var}\left(x_{i}\right)=\sigma^{2}<\infty
$$

$$
E(\bar{x})=\mu, \quad \operatorname{Var}(\bar{x})=\frac{\sigma^{2}}{n}
$$

$$
\begin{aligned}
& E|\bar{x}-\mu|^{2}=\operatorname{Var}(\bar{x})=\frac{\sigma^{2}}{n} \xrightarrow{n \rightarrow \infty} 0 \\
& \forall \varepsilon>0 \\
& p(|\bar{x}-\mu|>\varepsilon) \leqslant \frac{\operatorname{Var}(\bar{x}-\mu)}{\varepsilon^{2}}=\frac{\sigma^{2}}{n \varepsilon^{2}} \longrightarrow 0
\end{aligned}
$$

Law of large numbers

A generalization of the theorem: triangular array

Triangular array

A triangular array of random variables is a collection $\left\{X_{n, k}\right\}_{1 \leq k \leq n}$.

$$
\begin{array}{lll}
\frac{x_{1,1}}{x_{2,1}, x_{2,2}} \quad n=1 \\
x_{3,1}, x_{3,2}, x_{3,3} & \stackrel{x_{1}}{\sim} & \stackrel{x_{2}-n \mu}{n} \\
\vdots & S_{n}=\sum_{i=1}^{n} x_{i} \cdot \frac{s_{n}-\mu_{n}}{b_{n}} \\
x_{n, 1}, x_{n, 2}, \cdots, x_{n, n} & S_{n}=\sum_{k=1}^{n} X_{n, k} .
\end{array}
$$

Remark: We can consider the limiting property of the row sum S_{n}.

$$
\begin{aligned}
\mu_{n} & =E\left(S_{n}\right) \\
& \neq n \mu
\end{aligned}
$$

Law of Large Numbers

L^{2} weak law for triangular array

Suppose $\left\{X_{n, k}\right\}$ is a triangular array, $n=1,2, \cdots, k=1,2, \cdots, n$. Let
$S_{n}=\sum_{k=1}^{n} X_{n, k}, \mu_{n}=\mathbb{E}\left(S_{n}\right)$, if $\sigma_{n}^{2} / b_{n}^{2} \rightarrow 0$, where $\sigma_{n}^{2}=\operatorname{Var}\left(S_{n}\right)$ and b_{n} is a sequence of positive real numbers, then

$$
\frac{S_{n}-\mu_{n}}{b_{n}} \quad \xrightarrow{P} 0 .
$$

Remark:

The L^{2} weak law for i.i.d. random variables is a special case of that for triangular array.

$$
\begin{gathered}
x_{n, 1} \cdots x_{n, n} \quad \text { ind. } E\left(x_{n, k}\right)=\mu . \quad \operatorname{Var}\left(x_{n, k}\right)=\sigma^{2} \\
S_{n}=n \bar{x} \quad \mu_{n}=E\left(S_{n}\right)=n \mu . \quad \operatorname{Var}(n \bar{x})=n^{2} \frac{\sigma^{2}}{n}=n \sigma^{2} \\
\sigma_{n}^{2}=\operatorname{Var}^{2}\left(S_{n}\right)=\operatorname{loc} \\
b_{n}^{2}=n^{2} \sigma_{n}^{2} / b_{n}^{2}=\frac{\sigma^{2}}{n} \quad 12 / 18
\end{gathered}
$$

Law of large numbers

$$
\forall \varepsilon>0 .
$$

Proof:

$$
\begin{aligned}
&\left.P\left(\left|\frac{S_{n}-\mu_{n}}{b_{n}}\right|>\varepsilon\right)=P\left(\frac{\left(S_{n}-\mu_{n}\right.}{b_{n}}\right)^{2}>\varepsilon^{2}\right) \\
& \leqslant \frac{E\left(\frac{S_{n}-\mu_{n}}{b_{n}}\right)^{2}}{\varepsilon^{2}}=\frac{E\left(S_{n}-E\left(S_{n}\right)\right)^{2}}{b_{n}^{2} \varepsilon^{2}} \\
&=\frac{\operatorname{Var}\left(S_{n}\right)}{b_{n^{2}} \varepsilon^{2}}=\frac{\sigma_{n}^{2}}{b_{n}^{2} \varepsilon^{2}}
\end{aligned}
$$

Law of large numbers

Proof:

$$
P\left(\left|x_{n}\right|>b n\right)
$$

Remark:

$$
x_{n} 1\left(\left|x_{n}\right| \leq b_{n}\right)
$$

A more generalized version incorporates truncation, then the second-moment constraint is relieved.

Law of large numbers

Strong Law of Large Numbers (SLLN)

Let X_{1}, X_{2}, \cdots be an i.i.d. sequence satisfying $\mathbb{E}\left(X_{i}\right)=\mu$ and $\mathbb{E}\left(\left|X_{i}\right|\right)<\infty$, then $\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n} \xrightarrow{\text { a.s. }} \mu$.

Remark: The proof needs Borel-Cantelli lemma.

Law of large numbers

Strong Law of Large Numbers (SLLN)

Let X_{1}, X_{2}, \cdots be an i.i.d. sequence satisfying $\mathbb{E}\left(X_{i}\right)=\mu$ and $\mathbb{E}\left(\left|X_{i}\right|\right)<\infty$, then $\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n} \quad \xrightarrow{\text { a.s. }} \mu$.

Remark: The proof needs Borel-Cantelli lemma.

$$
x, \ldots x_{n} \sim x \sim F_{x}(\cdot)
$$

Glivenko-Cantelli theorem

Let $X_{i}, i=1, \cdots, n$ i.i.d. with distribution function $F(\cdot)$, and let $\underbrace{}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} l\left(X_{i} \leq x\right)$, then as $n \rightarrow \infty, \quad f(x)=p(x \leqslant x)$. Empirical CDF $\sup _{x \in \mathbb{R}}\left|F(x)-F_{n}(x)\right| \rightarrow 0, \quad$ a.s.

Law of large numbers

$$
\begin{aligned}
Y_{i} \quad E\left(Y_{i}\right) & =E\left(1\left(x_{i} \leq x\right)\right. \\
& =p\left(x_{i} \leq x\right) \\
& =F(x) \in[0,1]
\end{aligned}
$$

$$
\begin{aligned}
& A x=\{w: \lim _{n \rightarrow 0} \underbrace{}_{n} F_{n}(x) \neq F(x)!\quad p(A x)=0 \\
& \text { on } A_{x}{ }^{\lim _{n \rightarrow \infty} F_{n}(x)}=\underbrace{F(x)} \quad \forall \varepsilon>0 .
\end{aligned}
$$

$F(x)$ is continuous. \rightarrow simplest.

Law of large numbers $\forall m,-\infty=x_{0}<x_{1}<x_{2} \cdots<x_{m}=\infty$

Proof: $F(x)$

Law of large numbers
Proof: choose $N(\varepsilon)=\max _{1 \leq i \leq m} N(\varepsilon, i)<\infty$
$\forall n>N(\varepsilon)$

$$
\sup _{x \in i \leq m}\left|F_{n}(x)-F(x)\right|<\varepsilon\left(x_{i}\right)-F(x) \left\lvert\,<\varepsilon-\frac{1}{m} .\right.
$$

A. $P(A)=0$. on $A^{c}, \forall \varepsilon>0$. $\exists N(\varepsilon) \forall n>N(\varepsilon)$

$$
\begin{array}{r}
\sup _{x \in \mathbb{R}}|F n(x)-F(x)|<\varepsilon . \quad \sup _{x \in \mathbb{R}_{R}}\left|F_{n}(x)-F(x)\right| \\
\underset{\sim}{\longrightarrow} \rightarrow 0
\end{array}
$$

Central Limit Theorem

What is the limiting distribution of the sample mean?

Classic CLT

Suppose $X_{1}, \cdots X_{n}$ is a sequence of i.i.d. random variables with $\mathbb{E}\left(X_{i}\right)=\mu$, $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty$, then

Remark:

- The proof involves characteristic function.

$$
\frac{\bar{x}_{n}-\mu n}{\sigma} \xrightarrow{d} \frac{1}{\sqrt{n}} N(0,1)=0
$$

- A more generalized CLT is referred to as "Lindeberg CLT".

Central Limit Theorem

Example:

Suppose $X_{i} \sim \operatorname{Bernoulli}(p) \quad \underbrace{\text { i.i.d.. }}$ consider $Z_{n}=\frac{\sum_{i=1}^{n} X_{i}-n p}{\sqrt{n p(1-p)}}$, then by CLT,
$Z_{n} \sim \mathcal{N}(0,1)$ asymptotically.

Problem Set

Problem 1: Prove that on a complete probability space, if $X_{n} \xrightarrow{\text { a.s. }} X, Y_{n} \xrightarrow{\text { a.s. }} Y$, then $X_{n}+Y_{n} \xrightarrow{\text { a.s. }} X+Y$.

Problem 2: Prove that on a complete probability space, if $X_{n} \xrightarrow{P} X, Y_{n} \xrightarrow{P} Y$, then $X_{n}+Y_{n} \xrightarrow{P} X+Y$.

Problem 3: A bank teller serves customers standing in the queue one by one. Suppose that the service time X_{i} for customer i has mean $\mathbb{E}\left(X_{i}\right)=2$ (minutes) and $\operatorname{Var}\left(X_{i}\right)=1$. We assume that service times for different bank customers are independent. Let Y be the total time the bank teller spends serving 50 customers. Find $\mathbb{P}(90<Y<110)$.

