UNIVERSITY OF
TORONTO

Statistical Sciences

DoSS Summer Bootcamp Probability Module 9

Miaoshiqi (Shiki) Liu

University of Toronto
July 27, 2022

Recap

Learnt in last module:

- Convergence of functions of random variables
\triangleright Slutsky's theorem
\triangleright Continuous mapping theorem
- Laws of large numbers
\triangleright WLLN
\triangleright SLLN
\triangleright Glivenko-Cantelli theorem
- Central limit theorem

Outline

- Markov Chain
\triangleright Markov Property
- Discrete-time Markov Chain
\triangleright Transition probability
\triangleright Chapman-Kolmogorov equation
- Continuous-time Markov Chain
\triangleright Transition probability
\triangleright Chapman-Kolmogorov equation
\triangleright Generator matrix

Markov chain

MCMC

$$
E(x)=\int x d F(x)=\int x \underline{f(x)} d x
$$

Recall:
A sequence of random variables $\left\{X_{n}\right\}_{i=1}^{n}$ are used to describe outcomes of random experiments. $\quad y_{1} \quad x_{2}$

Markov chain

Recall:
A sequence of random variables $\left\{X_{n}\right\}_{i=1}^{n}$ are used to describe outcomes of random experiments.

Remark:

What if the random variables follow some time structure (happen subsequently)?

Markov chain

Recall:

A sequence of random variables $\left\{X_{n}\right\}_{i=1}^{n}$ are used to describe outcomes of random experiments.

Remark:

What if the random variables follow some time structure (happen subsequently)?

Examples:

- Daily weather in Toronto
- Daily Covid-19 cases in Canada

Markov chain

Recall:

A sequence of random variables $\left\{X_{n}\right\}_{i=1}^{n}$ are used to describe outcomes of random experiments.

Remark:

What if the random variables follow some time structure (happen subsequently)?

Examples:

- Daily weather in Toronto
- Daily Covid-19 cases in Canada

Difficulties:

- The possible values of X_{i} 's can vary a lot
- The random structure of X_{i} 's can be complicated

Markov chain

Remark:

Consider a Markov chain to overcome the difficulties.

Markov chain

A Markov chain is specified by three ingredients:

- A state space \mathcal{S}, any non-empty finite or countable set.
- Initial probabilities $\left\{\nu_{i}\right\}_{i \in \mathcal{S}}$ where ν_{i} is the probability of starting at i (at time 0).
- Markov property:

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)=p_{i j}, \quad \forall i, j \in \mathcal{S}
$$

and $\left\{p_{i, j}\right\}_{i, j \in \mathcal{S}}$ are transition probabilities.

Markov chain

Figure: Simplification by Markov chain

Markov chain

Remark:

The Markov chain we have introduced so far has discrete time index, and is called Discrete-time Markov Chain (DTMC). But there is also Continuous-time Markov chain (CTMC), and is sometimes referred to as "Markov Process".

	Countable state space	Continuous state space
Discrete time	DTMC	
Continuous time	CTMC	Continuous stochastic processes

Table: Types of "Series with Markov Property"

Discrete-time Markov chain

Representation of DTMC:

- Transition graph

$$
\begin{aligned}
P_{12} & =p\left(x_{n+1}=s_{2} \mid x_{n}=s_{1}\right) \\
& =p\left(x_{1}=s_{2} \mid x_{0}=s_{1}\right) \\
& =p\left(x_{10}=s_{2} \mid x_{9}=s_{1}\right)
\end{aligned}
$$

Figure: Example of the transition graph

Discrete-time Markov chain

$$
\text { Pij. } \quad i=1,2,3 . j=1,2,3
$$

Representation of DTMC:

- Transition matrix

$$
P=\left[\begin{array}{lll}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{array}\right]
$$

Properties:

- $p_{i j} \geq 0, \quad i, j \in \mathcal{S}$

$$
P_{i j}=P\left(x_{n+1}=j 1 x_{n}=i\right)
$$

- $\sum_{j \in \mathcal{S}} p_{i j}=1, \quad i \in \mathcal{S}$

Discrete-time Markov chain

Representation of DTMC:

- Transition matrix

$$
P=\left[\begin{array}{lll}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{array}\right]
$$

Properties:

- $p_{i j} \geq 0, \quad i, j \in \mathcal{S}$
- $\sum_{j \in \mathcal{S}} p_{i j}=1, \quad i \in \mathcal{S}$

Remark:
We don't have $\sum_{i \in \mathcal{S}} p_{i j}=1, \quad j \in \mathcal{S}$.

Discrete-time Markov chain

Computation of joint probability:

$$
\begin{aligned}
\mathbb{P}\left(X_{0}=i, X_{1}=j\right) & =\mathbb{P}\left(X_{0}=i\right) \cdot \mathbb{P}\left(X_{1}=j \mid X_{0}=i\right)=\nu_{i} \cdot p_{i j} \\
\mathbb{P}\left(X_{0}=i, X_{1}=j, X_{2}=k\right) & =\mathbb{P}\left(X_{0}=i, X_{1}=j\right) \cdot \mathbb{P}\left(X_{2}=k \mid X_{0}=i, X_{1}=j\right) \\
& =\mathbb{P}\left(X_{0}=i, X_{1}=j\right) \cdot \mathbb{P}\left(X_{2}=k \mid X_{1}=j\right) \quad \text { (Markov Property) } \\
& =\nu_{i} \cdot p_{i j} \cdot p_{j k}
\end{aligned}
$$

Discrete-time Markov chain

Computation of joint probability:

$$
\begin{aligned}
\mathbb{P}\left(X_{0}=i, X_{1}=j\right) & =\mathbb{P}\left(X_{0}=i\right) \cdot \mathbb{P}\left(X_{1}=j \mid X_{0}=i\right)=\nu_{i} \cdot p_{i j} \\
\mathbb{P}\left(X_{0}=i, X_{1}=j, X_{2}=k\right) & =\mathbb{P}\left(X_{0}=i, X_{1}=j\right) \cdot \mathbb{P}\left(X_{2}=k \mid X_{0}=i, X_{1}=j\right) \\
& =\mathbb{P}\left(X_{0}=i, X_{1}=j\right) \cdot \mathbb{P}\left(X_{2}=k \mid X_{1}=j\right) \quad \text { (Markov Property) } \\
& =\nu_{i} \cdot p_{i j} \cdot p_{j k} \\
& \vdots \\
& \downarrow \\
\text { Remark: } & i \longrightarrow j \longrightarrow k
\end{aligned}
$$

From the transition graph: the joint probability is just specifying the path we are taking.

Discrete-time Markov chain

Computation of transition probability after n transitions:
n-transition probability
$p_{i j}^{(n)}=\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)=\mathbb{P}\left(X_{m+n}=j \mid X_{m}=i\right)$ is the probability that the state after n transitions is j if the original state is i. As a special case, $p_{i j}^{(1)}=p_{i j}$.

Discrete-time Markov chain

Computation of transition probability after n transitions:

n-transition probability
$p_{i j}^{(n)}=\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)=\mathbb{P}\left(X_{m+n}=j \mid X_{m}=i\right)$ is the probability that the state after n transitions is j if the original state is i. As a special case, $p_{i j}^{(1)}=p_{i j}$.

$$
\begin{aligned}
p_{i j}^{(2)}=\mathbf{P}\left(X_{2}=j \mid X_{0}=i\right) & =\sum_{k \in S} \mathbf{P}\left(X_{2}=j, X_{1}=k \mid X_{0}=i\right) \\
& =\sum_{k \in S} \mathbf{P}(X_{2}=j \mid X_{1}=k, \underbrace{\left.X_{0}=i\right)} \cdot \mathbf{P}\left(X_{1}=k \mid X_{0}=i\right) \\
& =\sum_{k \in S} \mathbf{P}\left(X_{2}=j \mid X_{1}=k\right) \cdot \mathbf{P}\left(X_{1}=k \mid X_{0}=i\right) \\
& =\sum_{k \in S} p_{i k} p_{k j}=\left(P^{2}\right)[i, j]
\end{aligned}
$$

Discrete-time Markov chain

Remark:

In general, we have

$$
p_{i j}^{(n)}=\left(P^{n}\right)[i, j] .
$$

Chapman-Kolmogorov equation / inequality

- $p_{i j}^{(m+n)}=\sum_{k \in \mathcal{S}} p_{i k}^{(m)} p_{k j}^{(n)}$ and $p_{i j}^{(m+s+n)}=\sum_{k \in \mathcal{S}} \sum_{l \in \mathcal{S}} p_{i k}^{(m)} p_{k l}^{(s)} p_{s j}^{(n)}$;
- $p_{i j}^{(m+n)} \geq p_{i k}^{(m)} p_{k j}^{(n)}$ and $p_{i j}^{(m+s+n)} \geq p_{i k}^{(m)} p_{k l}^{(s)} p_{s j}^{(n)}$ for any fixed state $k, l \in \mathcal{S}$.

Proof: $P_{i j}^{(m+n)}=P\left(x_{m+n}=j 1 x_{0}=i\right)$

$$
\begin{aligned}
& =\sum_{k \in s} P(x_{m+n}=j \mid \underbrace{\left.x_{n}=k\right) P\left(X_{m}=k \mid x_{0}=i\right)} \\
& =\sum_{k \in s} P_{i k}^{(m)} P_{k j}(n)
\end{aligned}
$$

Discrete-time Markov chain

Example:

Consider a Markov chain with $\mathcal{S}=1,2,3$, and $\nu=\left(\frac{1}{3}, \frac{2}{3}, 0\right)$, and $=\frac{2}{3}$.

$$
P=\left[\begin{array}{lll}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{array}\right]
$$

- Compute $\mathbb{P}\left(X_{0}=2\right), \longrightarrow \frac{2}{3}$.
- Compute $\mathbb{P}\left(X_{0}=1, X_{1}=1, X_{2}=2\right) ; \quad \nu_{1} p_{11} p_{12}$
- Compute $p_{12}^{(3)}$. $\quad 3=1+1+1$

$$
P_{12}^{(s)}=\sum_{k=1}^{3} \sum_{e=1}^{3} P_{1 k}^{(1)} P_{k}^{(1)} P_{e}^{(1)}
$$

Continuous-time Markov chain

Generalize the time index to be continuous:

Continuous-time Markov chain

A Continuous-time Markov chain $\{X(t)\}_{t \geq 0}$ is specified by three ingredients:

- A state space \mathcal{S}, any non-empty finite or countable set. $123 i$,
- Initial probabilities $\left\{\nu_{i}\right\}_{i \in \mathcal{S}}$ where ν_{i} is the probability of starting at $t=0$.
- Markov property: $\forall i, j \in \mathcal{S}, s, t \geq 0, \quad 1{ }^{2}{ }^{2}{ }^{3} t_{2} t_{3} \quad(t+s)-s=t$

$$
\mathbb{P}(X(t+s)=j \mid X(s)=i, X(u)=x(u), 0 \leq u \leq s)=\mathbb{P}(X(t+s)=j \mid X(s)=i)
$$

Remark: $\quad x(u) \underset{\substack{\text {. }}}{s} t+s=P(x(t)=j \mid x(0)=i)$
The process is called time-homogeneous when this probability does not depend on s.
Throughout the module, we will assume this time-homogeneity as a default.

Continuous-time Markov chain

Remark:

For time-homogeneous CTMC, we can define transition probability

$$
\begin{aligned}
& p_{i j}^{(t)}=\mathbb{P}(X(s+t)=j \mid X(s)=i)=\underline{\mathbb{P}(X(t)=j \mid X(0)=i) .} \\
& p^{(t)}
\end{aligned}
$$

Continuous-time Markov chain

Remark:

For time-homogeneous CTMC, we can define transition probability

$$
p_{i j}^{(t)}=\mathbb{P}(X(s+t)=j \mid X(s)=i)=\mathbb{P}(X(t)=j \mid X(0)=i) .
$$

Representation of CTMC:

- Transition graph after time t;
- Transition probability matrix:

$$
P_{\Delta}^{(t)}=\left[\begin{array}{ccc}
p_{11}^{(t)} & p_{12}^{(t)} & \cdots \\
p_{21}^{(t)} & p_{22}^{(t)} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right] \quad P^{(t)}=\left[\begin{array}{ccc}
p_{11}^{(t)} & p_{12}^{(t)} & p_{13}^{(t)} \\
\cdots & \\
\cdots &
\end{array}\right]
$$

Continuous-time Markov chain

Properties:

- $p_{i j}^{(t)} \geq 0, \quad i, j \in \mathcal{S}$
- $\sum_{j \in \mathcal{S}} p_{i j}^{(t)}=1, \quad i \in \mathcal{S}$
- $\mathbb{P}\left(X(0)=i_{0}, X\left(t_{1}\right)=i_{1}, \ldots, X\left(t_{n}\right)=i_{n}\right)=v_{i_{0}} p_{i_{0} i_{1}}^{\left(t_{1}\right)} \ldots p_{i_{n-1} i_{n}}^{\left(t_{n}-t_{n-1}\right)}$, for $0<t_{1}<\cdots<t_{n}$.

Continuous-time Markov chain

Properties:

- $p_{i j}^{(t)} \geq 0, \quad i, j \in \mathcal{S}$
- $\sum_{j \in \mathcal{S}} p_{i j}^{(t)}=1, \quad i \in \mathcal{S}$
- $\mathbb{P}\left(X(0)=i_{0}, X\left(t_{1}\right)=i_{1}, \ldots, X\left(t_{n}\right)=i_{n}\right)=v_{i_{0}} p_{i_{0} i_{1}}^{\left(t_{1}\right)} \ldots p_{i_{n-1} i_{n}}^{\left(t_{n}-t_{n-1}\right)}$, for $0<t_{1}<\cdots<t_{n}$.

Chapman-Kolmogorov Equation

For a Continuous-time Markov chain $\left\{X_{t}\right\}_{t \geq 0}$ with transition probability matrix $P^{(t)}$,

$$
\begin{aligned}
& P^{(s+t)}=P^{(s)} P^{(s)} . \quad A=B \quad A[i, j]=B[i, j] \\
& \forall i j \in S \quad P_{i, j}^{(s+t)}=\left[p^{(s)} P^{(t)}\right][i j j] \quad\left[P^{(s)} P^{(t)}\right][i, j] \\
& P_{i j}^{(s+t)}=P\left(x_{t+s}=; \mid x_{0}=i\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k<s} P^{(s)}[i, k] P^{(t)}\left[k_{, j}\right] .
\end{aligned}
$$

TORONTO
Proof:

Continuous-time Markov chain

$$
\lim
$$

$$
\left.P_{i, 1}\right)^{\prime \prime}-P_{i j} i^{(0)}
$$

$$
i=j
$$

$$
t \rightarrow 0
$$

t $g_{i i} \leq 0$
Generator and generator matrix
Given a Markov process, its generator is

$$
g_{i j}=\lim _{t \rightarrow 0} \frac{p_{i j}^{(t)}-\delta_{i j}}{t}
$$

$$
\begin{aligned}
& \delta_{i j}=\left\{\begin{array}{l}
1, i=j \\
0, i \neq j \\
\rho_{i i^{(0)}}=1 \\
\rho_{i j}^{(0)}=0, i \neq j
\end{array}\right\} P_{i j}^{(0)}=\delta_{i j}
\end{aligned}
$$

where $\delta_{i j}=p_{i j}^{(0)}=1$ if $i=j$, and 0 otherwise. The generator matrix is defined by

$$
G=\lim _{t \rightarrow 0} \frac{P^{(t)}-1}{t} . \quad \sum_{J \in S} P_{i j}^{(t)}=1 \longleftarrow \text { isth row sum }
$$

Properties:

- For t small. $P^{(t)} \approx I+t G ; \quad G \approx \frac{P^{(t)}-I}{t}$
- Row sums of G is 0 .

Continuous-time Markov chain
Continuous-time transition theorem
If a continuous-time markov chain has generator martix G, then for $t \geq 0$

$$
P^{(t)}=\exp (t G)=I+t G+\frac{t^{2} G^{2}}{2!}+\cdots \quad G^{2} n=0, \cdots \infty .
$$

Proof: (Non-rigorous).

$$
\begin{aligned}
P^{(t)} & \approx I+t G, \quad t \text { small } \quad \lim _{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{n}=e^{a} \\
& =I+t G+\underbrace{0(t)}
\end{aligned}
$$

$$
\begin{aligned}
& p^{(t+s)}=p^{(t)} \cdot p^{(s)} \\
& \lim _{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{n}=e^{a}
\end{aligned}
$$

$$
\begin{gathered}
p^{(t)}=\lim _{n \rightarrow \infty} p^{(t)}=\lim _{n \rightarrow \infty} p^{\left(\frac{t}{n}\right)} \cdot p^{\left(\frac{t}{n}\right)} \cdots p^{\left(\frac{t}{n}\right)}=\lim _{n \rightarrow \infty}\left(p^{\left(\frac{t}{n}\right)}\right)^{n} \\
\approx \lim _{n \rightarrow \infty}\left(1+\frac{t}{n} G\right)^{n}=\exp (t G)
\end{gathered}
$$

Continuous-time Markov chain

Remark:

Suppose the eigendecomposition of G is $G=U D U^{-1}$, where D is a diagonal matrix with diagonal entries $\left\{d_{1}, d_{2}, \cdots\right\}$, then

$$
\begin{aligned}
& \quad P^{(t)}=U \\
& P^{(t)}= \exp (t G) \\
&= U \exp (t D)
\end{aligned} U^{-1} .
$$

$$
P^{(t)}=U \exp (t D) U^{-1}
$$

$$
\begin{aligned}
G^{2} & =U D \underbrace{-1}\left(U D U^{-1}\right) \\
& =U D^{2} U^{-1} \\
G^{n} & =U D^{n} U^{-1}
\end{aligned}
$$

Continuous-time Markov chain

Remark:

Suppose the eigendecomposition of G is $G=U D U^{-1}$, where D is a diagonal matrix with diagonal entries $\left\{d_{1}, d_{2}, \cdots\right\}$, then

$$
P^{(t)}=U \exp (t D) U^{-1}
$$

Example:

Let

$$
P^{(t)}=\left[\begin{array}{cc}
1-3 t & 3 t \\
5 t & 1-5 t
\end{array}\right] \cdot \underbrace{+o(t)}
$$

- Find G;
- Find the exact form of $P^{(t)}$.

$$
G=\lim _{t \rightarrow 0} \frac{\left[\begin{array}{cc}
-3 t & 3 t \\
5 t & -5 t
\end{array}\right]+0(t)}{t}=\left[\begin{array}{cc}
-3 & 3 \\
5 & -5
\end{array}\right]
$$

$$
\lambda=0,-8
$$

$$
G=\left[\begin{array}{ll}
1 & -3 \\
1 & 5
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & -8
\end{array}\right]\left[\begin{array}{cc}
1 & -3 \\
1 & 5
\end{array}\right]^{-1} \quad \exp (t G)
$$

Problem Set

Problem 1: (Bernoulli Process) Let $0<p<1$, repeatedly flp a coin with head probability p. Let X_{n} be the number of heads on the first n flips.

- Verify that $\left\{X_{n}\right\}$ is a Markov chain, specify the state space, initial probability and transition probability;
- Draw a sketch of the transition graph;
- For $p=\frac{1}{4}$, compute $\mathbb{P}\left(X_{0}=0, X_{1}=1, X_{2}=1, X_{3}=2\right)$.

Problem 2: Suppose a fair six-sided die is repeatedly rolled at times $0,1, \cdots$ Let $X_{0}=0$, and for $n \geq 1$ let X_{n} be the largest value that appears among all of the rolls up to time n.

- Verify that $\left\{X_{n}\right\}$ is a Markov chain, specify the state space, initial probability and transition probability;
- Compute two-step transitions $\left\{p_{35}^{(2)}\right\}$.

Problem Set

Problem 3: Let $\{X(t)\}_{t \geq 0}$ be a continuous-time Markov chain on the state space $\mathcal{S}=\{1,2,3\}$, suppose that as $t \rightarrow 0$, the transition probabilities are given by

$$
P^{(t)}=\left(\begin{array}{ccc}
1-7 t & 7 t & 0 \\
0 & 1-3 t & 3 t \\
t & 2 t & 1-3 t
\end{array}\right)+o(t)
$$

Compute the generator matrix G.

