

Statistical Sciences

DoSS Summer Bootcamp Probability Module 10

Miaoshiqi (Shiki) Liu

University of Toronto

July 28, 2022

▶ < 클 ▶ < 클 ▶ < 클 ▶ 볼 ∽ Q @ July 28, 2022 1/20

Recap

Learnt in last module:

- Markov Chain
 - Markov Property
- Discrete-time Markov Chain
 - ▷ Transition probability
 - Chapman-Kolmogorov equation
- Continuous-time Markov Chain
 - ▷ Transition probability
 - Chapman-Kolmogorov equation
 - Generator matrix

Outline

- Poisson process
 - Poisson-Gamma relationship
 - Properties of Poisson Process
- Brownian motion
 - ▷ Properties of Brownian motion
 - ▷ Brownian motion with drift
 - ▷ Geometric Brownian motion

Poisson process: an example of CTMC

Poisson process

A Poisson process $\{N(t)\}_{t\geq 0}$ with intensity $\lambda > 0$ is a collection of non-decreasing integer-valued random variables satisfying the properties that

- N(0) = 0;
- Independent increments: N(t) is independent of N(t + s) N(t);
- $N(t+s) N(s) \sim \textit{Poisson}(\lambda t), \quad t \ge 0, s \ge 0.$

Poisson process: an example of CTMC

Poisson process

A Poisson process $\{N(t)\}_{t\geq 0}$ with intensity $\lambda > 0$ is a collection of non-decreasing integer-valued random variables satisfying the properties that

- N(0) = 0;
- Independent increments: N(t) is independent of N(t + s) N(t);
- $N(t+s) N(s) \sim \textit{Poisson}(\lambda t), \quad t \geq 0, s \geq 0.$

Remark:

- Easy to verify the Markov property of Poisson process;
- $N(t) \sim Poisson(\lambda t)$.

Examples:

- The number of customers arriving at a grocery store with intensity $\lambda = 5$ customers per hour;
- The number of students coming to the TA session with intensity $\lambda = 3$ students per hour;
- The number of births in Canada with intensity $\lambda = 40$ per hour.

Examples:

- The number of customers arriving at a grocery store with intensity $\lambda=5$ customers per hour;
- The number of students coming to the TA session with intensity $\lambda = 3$ students per hour;
- The number of births in Canada with intensity $\lambda = 40$ per hour.

The probability that more than 60 babies are born between 9 to 11 AM in Canada:

$$\mathbb{P}(N(t+2) - N(t) > 60) = \mathbb{P}(N(2) > 60) = 1 - \sum_{k=0}^{60} \frac{e^{-40 \cdot 2} (40 \cdot 2)^k}{k!}$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ > ○ Q (~ July 28, 2022 5 / 20

Think about the waiting time for the event:

Inter-arrival time for Poisson process

Consider a Poisson process $\{N(t)\}_{t\geq 0}$ with intensity λ , and let T_1 be the time for the first event. Sequentially, let T_n denote the time between the (n-1)-th and the *n*-th event. Then $\{T_n\}_{n\geq 1}$ are i.i.d. exponential random variables with parameter λ , e.g.

$$\mathbb{P}(T_n \leq t) = 1 - e^{-\lambda t}.$$

Arrival time for Poisson process:

Poisson-Gamma relationship

Consider a Poisson process $\{N(t)\}_{t\geq 0}$ with intensity λ , then the total time until n events is $\sum_{i=1}^{n} T_i \sim \Gamma(n, \lambda)$.

Useful Properties:

$T_1 \mid N(s) = 1 \sim U[0,s]$

Consider a Poisson process $\{N(t)\}_{t\geq 0}$ with intensity λ , then

$$\mathbb{P}(T_1 < t \mid N(s) = 1) = rac{t}{s}, \quad t < s.$$

$N(s) \mid N(\overline{t}) = n \sim B(n, p = rac{s}{t})$ for s < t

Consider a Poisson process $\{N(t)\}_{t \ge 0}$ with intensity λ , then for s < t,

$$N(s) \mid N(t) = n \sim B(n, p = \frac{s}{t}).$$

Proof:

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ > ○ へ ○ July 28, 2022 9 / 20

Superposition

If $\{N_1(t)\}_{t\geq 0}$ and $\{N_2(t)\}_{t\geq 0}$ are independent Poisson processes with intensities λ_1 and λ_2 , respectively, then $\{N(t) := N_1(t) + N_2(t)\}_{t\geq 0}$ is also a Poisson process with intensity $\lambda_1 + \lambda_2$.

Thinning

Let $\{N(t)\}_{t\geq 0}$ be a Poisson process with intensity λ . Suppose each event is independently of type *i* with probability p_i for $i = 1, \dots, k$ with $\sum_{i=1}^k p_i = 1$. If $N_i(t)$ is the number of events of type *i* happen up to time *t*, then $\{N_i(t)\}$ is a Poisson process with rate λp_i .

Thinning

Let $\{N(t)\}_{t\geq 0}$ be a Poisson process with intensity λ . Suppose each event is independently of type *i* with probability p_i for $i = 1, \dots, k$ with $\sum_{i=1}^k p_i = 1$. If $N_i(t)$ is the number of events of type *i* happen up to time *t*, then $\{N_i(t)\}$ is a Poisson process with rate λp_i .

Properties of Poisson process:

Let $\{N(t)\}_{t\geq 0}$ be a Poisson process with intensity λ , then

- $T_1 \mid N(s) = 1 \sim U[0, s];$
- $N(s) \mid N(t) = n \sim B(n, p = \frac{s}{t})$ for s < t;
- Superposition:
- Thinning.

Brownian motion: an example of process with continuous time and continuous state

Brownian motion

Standard Brownian motion is a continuous-time process $\{B(t)\}_{t\geq 0}$ satisfying that

- B(0) = 0;
- Independent increments: for $0 \le q < r \le s < t$, B(t) B(s) and B(r) B(q) are independent random variables;
- $B(t+s) B(s) \sim \mathcal{N}(0, t), \ s \ge 0, t > 0;$
- B(t) is almost surely continuous.

Remark: Easy to verify the Markov property.

Useful properties of Brownian motion:

Joint distribution regarding Brownian motion

For $0 < t_1 < \cdots < t_n$, $(B(t_1), B(t_2), \cdots, B(t_n))^{\top}$ follows a multivariate normal distribution.

Proof:

<ロ > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > 三 の < で July 28, 2022 13 / 20

$Cov(B(s), B(t)) = \min(t, s)$

For a standard Brownian motion $\{B(t)_{t\geq 0}\}$, the covariance satisfies

Cov(B(s), B(t)) = min(t, s).

Proof:

$Cov(B(s), B(t)) = \min(t, s)$

For a standard Brownian motion $\{B(t)_{t\geq 0}\}$, the covariance satisfies

Cov(B(s), B(t)) = min(t, s).

Proof:

Remark: Useful technique: rearrange into independent parts

□ ▶ < 큔 ▶ < 글 ▶ < 글 ▶ 글 ♡ < ♡ July 28, 2022 14 / 20

Note when

$$\left(\begin{array}{c} X\\ Y \end{array}\right) \sim \mathcal{MVN}\left(\left(\begin{array}{c} \mu_1\\ \mu_2 \end{array}\right), \left[\begin{array}{cc} \sigma_1^2 & \rho\sigma_1\sigma_2\\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{array}\right]\right),$$

the conditional distribution satisfies

$$X \mid Y = y \sim \mathcal{N}\left(\mu_1 + \rho \frac{\sigma_1}{\sigma_2} \left(y - \mu_2\right), \left(1 - \rho^2\right) \sigma_1^2\right).$$

Note when

$$\left(\begin{array}{c} X\\ Y \end{array}\right) \sim \mathcal{MVN}\left(\left(\begin{array}{c} \mu_1\\ \mu_2 \end{array}\right), \left[\begin{array}{cc} \sigma_1^2 & \rho\sigma_1\sigma_2\\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{array}\right]\right),$$

the conditional distribution satisfies

$$X \mid Y = y \sim \mathcal{N}\left(\mu_1 + \rho \frac{\sigma_1}{\sigma_2} \left(y - \mu_2\right), \left(1 - \rho^2\right) \sigma_1^2\right).$$

Conditional distribution regarding Brownian motion

For 0 < s < t, we have

•
$$B(s) \mid B(t) = a \sim \mathcal{N}(\frac{s}{t}a, (1-\frac{s}{t})s);$$

•
$$B(t) \mid B(s) = a \sim \mathcal{N}(a, t-s).$$

Proof:

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ > ○ Q ○ July 28, 2022 16 / 20

Brownian motion with drift

For $\mu \in \mathbb{R}$ and $\sigma > 0$, the process defined by $\{D(t) = \mu t + \sigma B(t)\}$ is called the Brownian motion with drift. μ is the drift parameter and σ^2 is the variance parameter.

Remark:

- D(0) = 0;
- $D(t) \sim \mathcal{N}(\mu t, \sigma^2 t^2).$

Brownian motion with drift

For $\mu \in \mathbb{R}$ and $\sigma > 0$, the process defined by $\{D(t) = \mu t + \sigma B(t)\}$ is called the Brownian motion with drift. μ is the drift parameter and σ^2 is the variance parameter.

Remark:

- D(0) = 0;
- $D(t) \sim \mathcal{N}(\mu t, \sigma^2 t^2).$

Example:

Find the probability that Brownian motion with drift takes value between 1 and 2 at time t = 4, when $\mu = 0.6$, $\sigma^2 = 0.25$.

Geometric Brownian Motion

Let $\{D(t) = \mu t + \sigma B(t)\}$ be a Brownian motion with drift, the process $\{G(t) = G(0)e^{D(t)}\}_{t\geq 0}$ is called Geometric Brownian motion, provided that G(0) > 0.

Remark:

 $\mathbb{E}(G(t)) = G(0)e^{t(\mu+\frac{\sigma^2}{2})}.$

Problem Set

Problem 1: The Poisson process with intensity λ is an example of CTMC.

- Find *P*^(*t*);
- Compute the generator matrix G.

Problem 2: If $\{N(t)\}_{t\geq 0}$ is a Poisson process with $\lambda = 3$, compute the probability $\mathbb{P}(N(2) = 4, N(4) = 8)$.

Problem 3: Suppose that undergraduate students and graduate students arrive for office hours according to a Poisson process with rate $\lambda_1 = 5$ and $\lambda_2 = 3$ respectively. What is the expected time until the first student arrives?

Problem Set

Problem 4: Let $\{B(t)\}_{t\geq 0}$ be a standard Brownian motion. Show that the followings are Brownian motions.

•
$$\{Y(t) = B(t + \alpha) - B(\alpha)\}_{t \ge 0}$$
 for all $\alpha \ge 0$;

•
$$\{Y(t) = \alpha B(t/\alpha^2)\}_{t \ge 0}$$
 for all $\alpha \ge 0$.

