UNIVERSITY OF
TORONTO

Statistical Sciences

DoSS Summer Bootcamp Probability Module 1

Miaoshiqi (Shiki) Liu
University of Toronto
July 10, 2022

Roadmap

A bridge connecting undergraduate probability and graduate probability

Undergraduate-level probability

- Concrete;
- Examples and scenarios;
- Rely on computation...

Roadmap

A bridge connecting undergraduate probability and graduate probability

Undergraduate-level probability

- Concrete;
- Examples and scenarios;
- Rely on computation...

Graduate-level probability

- Abstract (measure theory);
- Laws and properties;
- Rely on construction and inference...

Roadmap

Figure: Roadmap

Outline

- Measurable spaces
\triangleright Sample Space
$\triangleright \sigma$-algebra
- Probability measures
\triangleright Measures on σ-field
\triangleright Basic results
- Conditional probability
\triangleright Bayes' rule
\triangleright Law of total probability

Measurable spaces

Sample Space

The sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Toss a coin: $\{H, T\}$
- Roll a die: $\{1,2,3,4,5,6\}$

Measurable spaces

Sample Space

The sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Toss a coin: $\{H, T\}$
- Roll a die: $\{1,2,3,4,5,6\}$

Event

An event is a collection of possible outcomes (subset of the sample space).
Examples:

- Get head when tossing a coin: $\{H\}$
- Get an even number when rolling a die: $\{2,4,6\}$

Measurable spaces

σ-algebra

A σ-algebra (σ-field) \mathcal{F} on Ω is a non-empty collection of subsets of Ω such that

- If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$,
- If $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.

Remark: $\varnothing, \Omega \in \mathcal{F}$

Probability measures

Measures on σ-field

A function $\mu: \mathcal{F} \rightarrow R^{+} \cup\{+\infty\}$ is called a measure if

- $\mu(\varnothing)=0$,
- If $A_{1}, A_{2}, \cdots \in \mathcal{F}$ and $A_{i} \cap A_{j}=\varnothing$, then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)$.

If $\mu(\Omega)=1$, then μ is called a probability measure.

Probability measures

Measures on σ-field

A function $\mu: \mathcal{F} \rightarrow R^{+} \cup\{+\infty\}$ is called a measure if

- $\mu(\varnothing)=0$,
- If $A_{1}, A_{2}, \cdots \in \mathcal{F}$ and $A_{i} \cap A_{j}=\varnothing$, then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)$.

If $\mu(\Omega)=1$, then μ is called a probability measure.

Properties:

- Monotonicity: $A \subseteq B \quad \Rightarrow \quad \mu(A) \leq \mu(B)$
- Subadditivity: $A \subseteq \cup_{i=1}^{\infty} A_{i} \Rightarrow \mu(A) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)$
- Continuity from below: $A_{i} \nearrow A \Rightarrow \mu\left(A_{i}\right) \nearrow \mu(A)$
- Continuity from above: $A_{i} \searrow A$ and $\mu\left(A_{i}\right)<\infty \quad \Rightarrow \quad \mu\left(A_{i}\right) \searrow \mu(A)$

Probability measures

Proof of continuity from below:

Probability measures

Proof of continuity from above:

Remark: $\mu\left(A_{i}\right)<\infty$ is vital.

Probability measures

Examples:

$\Omega=\left\{\omega_{1}, \omega_{2}, \cdots\right\}, A=\left\{\omega_{\mathrm{a}_{1}}, \cdots, \omega_{\mathrm{a}_{i}}, \cdots\right\} \Rightarrow \mu(A)=\sum_{j=1}^{\infty} \mu\left(\omega_{\mathrm{a}_{j}}\right)$.
Therefore, we only need to define $\mu\left(\omega_{j}\right)=p_{j} \geq 0$.
If further $\sum_{i=1}^{\infty} p_{j}=1$, then μ is a probability measure.

- Toss a coin:
- Roll a die:

Conditional probability

Original problem:

- What is the probability of some event A ?
- $P(A)$ is determined by our probability measure.

New problem:

- Given that B happens, what is the probability of some event A ?
- $P(A \mid B)$ is the conditional probability of the event A given B.

Conditional probability

Original problem:

- What is the probability of some event A ?
- $P(A)$ is determined by our probability measure.

New problem:

- Given that B happens, what is the probability of some event A ?
- $P(A \mid B)$ is the conditional probability of the event A given B.

Example:

- Roll a die: $P(\{2\} \mid$ even number $)$

Conditional probability

Bayes' rule

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad P(B)>0
$$

Remark: Does conditional probability $P(\cdot \mid B)$ satisfy the axioms of a probability measure?

Conditional probability

Multiplication rule

$$
P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Generalization:
Law of total probability
Let $A_{1}, A_{2}, \cdots, A_{n}$ be a partition of ω, such that $P\left(A_{i}\right)>0$, then

$$
P(B)=\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)
$$

Problem Set

Problem 1: Prove that for a σ-field \mathcal{F}, if $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\cap_{i=1}^{\infty} A_{i} \in \mathcal{F}$.
Problem 2: Prove monotonicity and subadditivity of measure μ on σ-field.
Problem 3: (Monty Hall problem) Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?
(Assumptions: the host will not open the door we picked and the host will only open the door which has a goat.)

