

Statistical Sciences

DoSS Summer Bootcamp Probability Module 2

Miaoshiqi (Shiki) Liu

University of Toronto

July 13, 2022

Recap

Learnt in last module:

- Measurable spaces
 - ▶ Sample Space
 - $ightharpoonup \sigma$ -algebra
- Probability measures
 - \triangleright Measures on σ -field
 - ▶ Basic results
- Conditional probability
 - ▶ Bayes' rule
 - ▷ Law of total probability

Outline

- Independence of events
 - ▶ Pairwise independence, mutual independence
 - ▷ Conditional independence
- Random variables
- Distribution functions
- Density functions and mass functions
- Independence of random variables

Recall the Bayes rule:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0$$

• What if B does not change our belief about A?

Recall the Bayes rule:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0$$

- What if B does not change our belief about A?
- This means $P(A \mid B) = P(A)$.

Recall the Bayes rule:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0$$

- What if B does not change our belief about A?
- This means $P(A \mid B) = P(A)$.
- Equivalently, $P(A \cap B) = P(A)P(B)$.

Recall the Bayes rule:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0$$

- What if B does not change our belief about A?
- This means $P(A \mid B) = P(A)$.
- Equivalently, $P(A \cap B) = P(A)P(B)$.

Independence of two events

Two events A and B are independent if $P(A \cap B) = P(A)P(B)$.

Remark:

Consider more than 2 events:

Pairwise independence

We say that events A_1, A_2, \dots, A_n are pairwise independent if

$$P(A_i \cap A_j) = P(A_i) \cdot P(A_j), \quad \forall i \neq j$$

Consider more than 2 events:

Pairwise independence

We say that events A_1, A_2, \cdots, A_n are pairwise independent if

$$P(A_i \cap A_j) = P(A_i) \cdot P(A_j), \quad \forall i \neq j$$

Mutual independence

We say that events A_1, A_2, \dots, A_n are mutually independent or independent if for all subsets $I \in \{1, 2, \dots, n\}$

$$P(\cap_{i\in I}A_i)=\prod_{i\in I}P(A_i)$$

Consider more than 2 events:

Pairwise independence

We say that events A_1, A_2, \dots, A_n are pairwise independent if

$$P(A_i \cap A_j) = P(A_i) \cdot P(A_j), \quad \forall i \neq j$$

Mutual independence

We say that events A_1, A_2, \dots, A_n are mutually independent or independent if for all subsets $I \in \{1, 2, \dots, n\}$

$$P(\cap_{i\in I}A_i)=\prod_{i\in I}P(A_i)$$

Remark:

Example:

- Toss two fair coins.;
- $A = \{ \text{ First toss is head} \}$, $B = \{ \text{ Second toss is head } \}$, $C = \{ \text{ Outcomes are the same } \}$;
- $A = \{HH, HT\}, B = \{HH, TH\}, C = \{HH, TT\};$

Example:

- Toss two fair coins.;
- A = { First toss is head}, B = { Second toss is head }, C = { Outcomes are the same };
- $A = \{HH, HT\}, B = \{HH, TH\}, C = \{HH, TT\};$
- $P(A \cap B) = P(A)P(B), P(A \cap C) = P(A)P(C), P(B \cap C) = P(B)P(C);$

Example:

- Toss two fair coins.;
- A = { First toss is head}, B = { Second toss is head }, C = { Outcomes are the same };
- $A = \{HH, HT\}, B = \{HH, TH\}, C = \{HH, TT\};$
- $P(A \cap B) = P(A)P(B), P(A \cap C) = P(A)P(C), P(B \cap C) = P(B)P(C);$
- $P(A \cap B \cap C) \neq P(A)P(B)P(C)$.

Conditional independence

Two events A and B are conditionally independent given an event C if

$$P(A \cap B \mid C) = P(A \mid C)P(B \mid C).$$

Conditional independence

Two events A and B are conditionally independent given an event C if

$$P(A \cap B \mid C) = P(A \mid C)P(B \mid C).$$

Example:

Previous example continued:

- $A = \{HH, HT\}, B = \{HH, TH\}, C = \{HH, TT\};$
- $P(A \cap B \mid C) = ?, P(A \mid C)P(B \mid C) = ?$

Conditional independence

Two events A and B are conditionally independent given an event C if

$$P(A \cap B \mid C) = P(A \mid C)P(B \mid C).$$

Example:

Previous example continued:

- $A = \{HH, HT\}, B = \{HH, TH\}, C = \{HH, TT\};$
- $P(A \cap B \mid C) = ?, P(A \mid C)P(B \mid C) = ?$

Remark:

Equivalent definition:

$$P(A \mid B, C) = P(A \mid C).$$

Random variables

Idea:

Instead of focusing on each events themselves, sometimes we care more about functions of the outcomes.

Random variables

Idea:

Instead of focusing on each events themselves, sometimes we care more about functions of the outcomes.

Example:

- Toss a fair coin twice: {HH, HT, TH, TT}
- Care about the number of heads: $\{2,1,0\}$

Random variables

Idea:

Instead of focusing on each events themselves, sometimes we care more about functions of the outcomes.

Example:

- Toss a fair coin twice: {HH, HT, TH, TT}
- Care about the number of heads: {2,1,0}

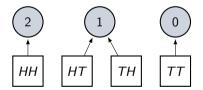


Figure: Mapping from the sample space to the numbers of heads

Random Variables

Example:

- Select twice from red and black ball with replacement: {RR, RB, BR, BB}
- Care about the number of red balls: $\{2, 1, 0\}$

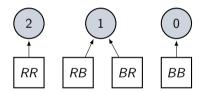


Figure: Mapping from the sample space to the numbers of red balls

Random Variables

Merits:

- Mapping the complicated events on σ -field to some numbers on real line.
- Simplify different events into the same structure

10 / 20

Random Variables

Merits:

- Mapping the complicated events on σ -field to some numbers on real line.
- Simplify different events into the same structure

Random Variables

Consider sample space Ω and the corresponding σ -field \mathcal{F} , for $X:\Omega\to\mathbb{R}$, if

$$A \in \mathcal{R}$$
 (Borel sets on \mathbb{R}) $\Rightarrow X^{-1}(A) \in \mathcal{F}$,

then we call X as a random variable.

Here
$$X^{-1}(A) = \{\omega : X(\omega) \in A\}.$$

We can also say X is \mathcal{F} -measurable.

Probability measure $P(\cdot)$ on \mathcal{F} can induce a measure $\mu(\cdot)$ on \mathcal{R} :

Probability measure on ${\cal R}$

We can define a probability μ on (R, \mathcal{R}) as follows:

$$\forall A \in \mathcal{R}, \quad \mu(A) := P(X^{-1}(A)) = P(X \in A).$$

Then μ is a probability measure and it is called the distribution of X.

Probability measure $P(\cdot)$ on \mathcal{F} can induce a measure $\mu(\cdot)$ on \mathcal{R} :

Probability measure on ${\cal R}$

We can define a probability μ on (R, \mathcal{R}) as follows:

$$\forall A \in \mathcal{R}, \quad \mu(A) := P(X^{-1}(A)) = P(X \in A).$$

Then μ is a probability measure and it is called the distribution of X.

Remark:

Verify that μ is a probability measure.

- $\mu(\mathbb{R}) = 1$.
- If $A_1, A_2, \dots \in \mathcal{R}$ are disjoint, then $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$.

Consider the special set that belongs to \mathcal{R} , $(-\infty, x]$:

Cumulative Distribution Function

The cumulative distribution function of random variable X is defined as follows:

$$F(x) := P(X \le x) = P(X^{-1}((-\infty, x])), \quad \forall x \in \mathbb{R}.$$

12 / 20

Consider the special set that belongs to \mathcal{R} , $(-\infty, x]$:

Cumulative Distribution Function

The cumulative distribution function of random variable X is defined as follows:

$$F(x) := P(X \le x) = P(X^{-1}((-\infty, x])), \quad \forall x \in \mathbb{R}.$$

Properties of CDF:

- $\lim_{x\to\infty} F(x) = 1$, $\lim_{x\to-\infty} F(x) = 0$
- $F(\cdot)$ is non-decreasing
- $F(\cdot)$ is right-continuous
- Let $F(x^-) = \lim_{y \nearrow x} F(y)$, then $F(x^-) = P(X < x)$
- $P(X = x) = F(x) F(x^{-})$

12 / 20

Proofs of properties of CDF (first 2 properties):

Classification of the random variables:

- Discrete random variable: X takes either a finite or countable number of possible numbers.
- Continuous random variable: The CDF is continuous everywhere.

14 / 20

Classification of the random variables:

- Discrete random variable: X takes either a finite or countable number of possible numbers.
- Continuous random variable: The CDF is continuous everywhere.

Another perspective (function):

- Discrete random variable: focus on the probability assigned on each possible values
- Continuous random variable: consider the derivative of the CDF (The continuous monotone CDF is differentiable almost everywhere)

Probability mass function

The probability mass function of X at some possible value x is defined by

$$p_X(x) = P(X = x).$$

Relationship between PMF and CDF:

$$F(x) = P(X \le x) = \sum_{y \le x} p_X(y)$$

Probability mass function

The probability mass function of X at some possible value x is defined by

$$p_X(x) = P(X = x).$$

Relationship between PMF and CDF:

$$F(x) = P(X \le x) = \sum_{y \le x} p_X(y)$$

Example:

Toss a coin

Probability density function

The probability density function of X at some possible value x is defined by

$$f_X(x) = \frac{d}{dx}F(x).$$

Relationship between PDF and CDF:

$$F(x) = P(X \le x) = \int_{y \le x} f_X(y) \ dy = \int_{-\infty}^{x} f_X(y) \ dy$$

16 / 20

Probability density function

The probability density function of X at some possible value x is defined by

$$f_X(x) = \frac{d}{dx}F(x).$$

Relationship between PDF and CDF:

$$F(x) = P(X \le x) = \int_{y \le x} f_X(y) \ dy = \int_{-\infty}^{x} f_X(y) \ dy$$

Example:

16 / 20

Define independence of random variables based on independence of events:

Independence of random variables

Suppose X_1, X_2, \cdots, X_n are random variables on (Ω, \mathcal{F}, P) , then

$$X_1, X_2, \cdots, X_n$$
 are independent

$$\Leftrightarrow \{X_1 \in A_1\}, \{X_2 \in A_2\}, \cdots, \{X_n \in A_n\} \text{ are independent}, \quad \forall A_i \in \mathcal{R}$$

$$\Leftrightarrow P(\cap_{i=1}^n \{X_i \in A_i\}) = \prod_{i=1}^n P(\{X_i \in A_i\})$$

Example:

Toss a fair coin twice, denote the number of heads of the *i*-th toss as X_i , then X_1 and X_2 are independent.

- A_i can be $\{0\}$ or $\{1\}$
- $\{(0,0),(0,1),(1,0),(1,1)\}$
- $P({X_1 \in A_1} \cap {X_2 \in A_2}) = \frac{1}{4}$
- $P({X_1 \in A_1}) = P({X_2 \in A_2}) = \frac{1}{2}$

Example:

Toss a fair coin twice, denote the number of heads of the i-th toss as X_i , then X_1 and X_2 are independent.

- A_i can be $\{0\}$ or $\{1\}$
- $\{(0,0),(0,1),(1,0),(1,1)\}$
- $P({X_1 \in A_1} \cap {X_2 \in A_2}) = \frac{1}{4}$
- $P({X_1 \in A_1}) = P({X_2 \in A_2}) = \frac{1}{2}$

Remark:

How to check independence in practice?

Corollary of independence

If X_1, \dots, X_n are random variables, then X_1, X_2, \dots, X_n are independent if

$$P(X_1 \leq x_1, \cdots, X_n \leq x_n) = \prod_{i=1}^n P(X_i \leq x_i)$$

Corollary of independence

If X_1, \dots, X_n are random variables, then X_1, X_2, \dots, X_n are independent if

$$P(X_1 \leq x_1, \cdots, X_n \leq x_n) = \prod_{i=1}^n P(X_i \leq x_i)$$

Remark:

Independence of discrete random variables

Suppose X_1, \dots, X_n can only take values from $\{a_1, \dots\}$, then X_i 's are independent if

$$P(\cap\{X_i=a_i\})=\prod_{i=1}^n P(X_i=a_i)$$

19 / 20

Problem Set

Problem 1: Give an example where the events are pairwise independent but not mutually independent.

Problem 2: Verify that the measure $\mu(\cdot)$ induced by $P(\cdot)$ is a probability measure on \mathcal{R} .

Problem 3: Prove properties 3 - 5 of CDF $F(\cdot)$.

Problem 4: Bob and Alice are playing a game. They alternatively keep tossing a fair coin and the first one to get a H wins. Does the person who plays first have a better chance at winning?

