UNIVERSITY OF
TORONTO

Statistical Sciences

DoSS Summer Bootcamp Probability Module 2

Miaoshiqi (Shiki) Liu
University of Toronto
July 13, 2022

Recap

Learnt in last module:

- Measurable spaces
\triangleright Sample Space
$\triangleright \sigma$-algebra
- Probability measures
\triangleright Measures on σ-field
\triangleright Basic results
- Conditional probability
\triangleright Bayes' rule
\triangleright Law of total probability

Outline

- Independence of events
\triangleright Pairwise independence, mutual independence
\triangleright Conditional independence
- Random variables
- Distribution functions
- Density functions and mass functions
- Independence of random variables

Independence of events

Recall the Bayes rule:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad P(B)>0
$$

- What if B does not change our belief about A ?

Independence of events

Recall the Bayes rule:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad P(B)>0
$$

- What if B does not change our belief about A ?
- This means $P(A \mid B)=P(A)$.

Independence of events

Recall the Bayes rule:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad P(B)>0
$$

- What if B does not change our belief about A ?
- This means $P(A \mid B)=P(A)$.
- Equivalently, $P(A \cap B)=P(A) P(B)$.

Independence of events

Recall the Bayes rule:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad P(B)>0
$$

- What if B does not change our belief about A ?
- This means $P(A \mid B)=P(A)$.
- Equivalently, $P(A \cap B)=P(A) P(B)$.

Independence of two events
Two events A and B are independent if $P(A \cap B)=P(A) P(B)$.
Remark:

Independence of events

Consider more than 2 events:
Pairwise independence
We say that events $A_{1}, A_{2}, \cdots, A_{n}$ are pairwise independent if

$$
P\left(A_{i} \cap A_{j}\right)=P\left(A_{i}\right) \cdot P\left(A_{j}\right), \quad \forall i \neq j
$$

Independence of events

Consider more than 2 events:

Pairwise independence
We say that events $A_{1}, A_{2}, \cdots, A_{n}$ are pairwise independent if

$$
P\left(A_{i} \cap A_{j}\right)=P\left(A_{i}\right) \cdot P\left(A_{j}\right), \quad \forall i \neq j
$$

Mutual independence

We say that events $A_{1}, A_{2}, \cdots, A_{n}$ are mutually independent or independent if for all subsets $I \in\{1,2, \cdots, n\}$

$$
P\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right)
$$

Independence of events

Consider more than 2 events:

Pairwise independence
We say that events $A_{1}, A_{2}, \cdots, A_{n}$ are pairwise independent if

$$
P\left(A_{i} \cap A_{j}\right)=P\left(A_{i}\right) \cdot P\left(A_{j}\right), \quad \forall i \neq j
$$

Mutual independence

We say that events $A_{1}, A_{2}, \cdots, A_{n}$ are mutually independent or independent if for all subsets $I \in\{1,2, \cdots, n\}$

$$
P\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right)
$$

Remark:

Independence of events

Example:

- Toss two fair coins.;
- $A=\{$ First toss is head $\}, B=\{$ Second toss is head $\}, C=\{$ Outcomes are the same \};
- $A=\{H H, H T\}, B=\{H H, T H\}, C=\{H H, T T\}$;

Independence of events

Example:

- Toss two fair coins.;
- $A=\{$ First toss is head $\}, B=\{$ Second toss is head $\}, C=\{$ Outcomes are the same \};
- $A=\{H H, H T\}, B=\{H H, T H\}, C=\{H H, T T\}$;
- $P(A \cap B)=P(A) P(B), P(A \cap C)=P(A) P(C), P(B \cap C)=P(B) P(C)$;

Independence of events

Example:

- Toss two fair coins.;
- $A=\{$ First toss is head $\}, B=\{$ Second toss is head $\}, C=\{$ Outcomes are the same \};
- $A=\{H H, H T\}, B=\{H H, T H\}, C=\{H H, T T\}$;
- $P(A \cap B)=P(A) P(B), P(A \cap C)=P(A) P(C), P(B \cap C)=P(B) P(C)$;
- $P(A \cap B \cap C) \neq P(A) P(B) P(C)$.

Independence of events

Conditional independence
Two events A and B are conditionally independent given an event C if

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C) .
$$

Independence of events

Conditional independence

Two events A and B are conditionally independent given an event C if

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C)
$$

Example:

Previous example continued:

- $A=\{H H, H T\}, B=\{H H, T H\}, C=\{H H, T T\}$;
- $P(A \cap B \mid C)=$?, $P(A \mid C) P(B \mid C)=$?

Independence of events

Conditional independence

Two events A and B are conditionally independent given an event C if

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C) .
$$

Example:

Previous example continued:

- $A=\{H H, H T\}, B=\{H H, T H\}, C=\{H H, T T\}$;
- $P(A \cap B \mid C)=$?, $P(A \mid C) P(B \mid C)=$?

Remark:

Equivalent definition:

$$
P(A \mid B, C)=P(A \mid C)
$$

Random variables

Idea:

Instead of focusing on each events themselves, sometimes we care more about functions of the outcomes.

Random variables

Idea:

Instead of focusing on each events themselves, sometimes we care more about functions of the outcomes.

Example:

- Toss a fair coin twice: $\{H H, H T, T H, T T\}$
- Care about the number of heads: $\{2,1,0\}$

Random variables

Idea:

Instead of focusing on each events themselves, sometimes we care more about functions of the outcomes.

Example:

- Toss a fair coin twice: $\{H H, H T, T H, T T\}$
- Care about the number of heads: $\{2,1,0\}$

Figure: Mapping from the sample space to the numbers of heads

Random Variables

Example:

- Select twice from red and black ball with replacement: $\{R R, R B, B R, B B\}$
- Care about the number of red balls: $\{2,1,0\}$

Figure: Mapping from the sample space to the numbers of red balls

Random Variables

Merits:

- Mapping the complicated events on σ-field to some numbers on real line.
- Simplify different events into the same structure

Random Variables

Merits:

- Mapping the complicated events on σ-field to some numbers on real line.
- Simplify different events into the same structure

Random Variables

Consider sample space Ω and the corresponding σ-field \mathcal{F}, for $X: \Omega \rightarrow \mathbb{R}$, if

$$
A \in \mathcal{R} \quad(\text { Borel sets on } \mathbb{R}) \Rightarrow X^{-1}(A) \in \mathcal{F}
$$

then we call X as a random variable.
Here $X^{-1}(A)=\{\omega: X(\omega) \in A\}$.
We can also say X is \mathcal{F}-measurable.

Distribution functions

Probability measure $P(\cdot)$ on \mathcal{F} can induce a measure $\mu(\cdot)$ on \mathcal{R} :

Probability measure on \mathcal{R}

We can define a probability μ on (R, \mathcal{R}) as follows:

$$
\forall A \in \mathcal{R}, \quad \mu(A):=P\left(X^{-1}(A)\right)=P(X \in A)
$$

Then μ is a probability measure and it is called the distribution of X.

Distribution functions

Probability measure $P(\cdot)$ on \mathcal{F} can induce a measure $\mu(\cdot)$ on \mathcal{R} :

Probability measure on \mathcal{R}

We can define a probability μ on (R, \mathcal{R}) as follows:

$$
\forall A \in \mathcal{R}, \quad \mu(A):=P\left(X^{-1}(A)\right)=P(X \in A)
$$

Then μ is a probability measure and it is called the distribution of X.

Remark:

Verify that μ is a probability measure.

- $\mu(\mathbb{R})=1$.
- If $A_{1}, A_{2}, \cdots \in \mathcal{R}$ are disjoint, then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)$.

Distribution functions

Consider the special set that belongs to $\mathcal{R},(-\infty, x]$:

Cumulative Distribution Function

The cumulative distribution function of random variable X is defined as follows:

$$
F(x):=P(X \leq x)=P\left(X^{-1}((-\infty, x])\right), \quad \forall x \in \mathbb{R}
$$

Distribution functions

Consider the special set that belongs to $\mathcal{R},(-\infty, x]$:

Cumulative Distribution Function

The cumulative distribution function of random variable X is defined as follows:

$$
F(x):=P(X \leq x)=P\left(X^{-1}((-\infty, x])\right), \quad \forall x \in \mathbb{R}
$$

Properties of CDF:

- $\lim _{x \rightarrow \infty} F(x)=1, \lim _{x \rightarrow-\infty} F(x)=0$
- $F(\cdot)$ is non-decreasing
- $F(\cdot)$ is right-continuous
- Let $F\left(x^{-}\right)=\lim _{y / x} F(y)$, then $F\left(x^{-}\right)=P(X<x)$
- $P(X=x)=F(x)-F\left(x^{-}\right)$

Distribution functions

Proofs of properties of CDF (first 2 properties):

Density functions and mass functions

Classification of the random variables:

- Discrete random variable: X takes either a finite or countable number of possible numbers.
- Continuous random variable: The CDF is continuous everywhere.

Density functions and mass functions

Classification of the random variables:

- Discrete random variable: X takes either a finite or countable number of possible numbers.
- Continuous random variable: The CDF is continuous everywhere.

Another perspective (function):

- Discrete random variable: focus on the probability assigned on each possible values
- Continuous random variable: consider the derivative of the CDF (The continuous monotone CDF is differentiable almost everywhere)

Density functions and mass functions

Probability mass function

The probability mass function of X at some possible value x is defined by

$$
p_{X}(x)=P(X=x)
$$

Relationship between PMF and CDF:

$$
F(x)=P(X \leq x)=\sum_{y \leq x} p_{x}(y)
$$

Density functions and mass functions

Probability mass function

The probability mass function of X at some possible value x is defined by

$$
p_{X}(x)=P(X=x)
$$

Relationship between PMF and CDF:

$$
F(x)=P(X \leq x)=\sum_{y \leq x} p_{x}(y)
$$

Example:
Toss a coin

Density functions and mass functions

Probability density function

The probability density function of X at some possible value x is defined by

$$
f_{X}(x)=\frac{d}{d x} F(x)
$$

Relationship between PDF and CDF:

$$
F(x)=P(X \leq x)=\int_{y \leq x} f_{X}(y) d y=\int_{-\infty}^{x} f_{X}(y) d y
$$

Density functions and mass functions

Probability density function

The probability density function of X at some possible value x is defined by

$$
f_{X}(x)=\frac{d}{d x} F(x)
$$

Relationship between PDF and CDF:

$$
F(x)=P(X \leq x)=\int_{y \leq x} f_{X}(y) d y=\int_{-\infty}^{x} f_{X}(y) d y
$$

Example:

Independence of random variables

Define independence of random variables based on independence of events:
Independence of random variables
Suppose $X_{1}, X_{2}, \cdots, X_{n}$ are random variables on (Ω, \mathcal{F}, P), then
$X_{1}, X_{2}, \cdots, X_{n}$ are independent

$$
\begin{aligned}
& \Leftrightarrow \quad\left\{X_{1} \in A_{1}\right\},\left\{X_{2} \in A_{2}\right\}, \cdots,\left\{X_{n} \in A_{n}\right\} \text { are independent, } \forall A_{i} \in \mathcal{R} \\
& \Leftrightarrow \quad P\left(\cap_{i=1}^{n}\left\{X_{i} \in A_{i}\right\}\right)=\prod_{i=1}^{n} P\left(\left\{X_{i} \in A_{i}\right\}\right)
\end{aligned}
$$

Independence of random variables

Example:

Toss a fair coin twice, denote the number of heads of the i-th toss as X_{i}, then X_{1} and X_{2} are independent.

- A_{i} can be $\{0\}$ or $\{1\}$
- $\{(0,0),(0,1),(1,0),(1,1)\}$
- $P\left(\left\{X_{1} \in A_{1}\right\} \cap\left\{X_{2} \in A_{2}\right\}\right)=\frac{1}{4}$
- $P\left(\left\{X_{1} \in A_{1}\right\}\right)=P\left(\left\{X_{2} \in A_{2}\right\}\right)=\frac{1}{2}$

Independence of random variables

Example:

Toss a fair coin twice, denote the number of heads of the i-th toss as X_{i}, then X_{1} and X_{2} are independent.

- A_{i} can be $\{0\}$ or $\{1\}$
- $\{(0,0),(0,1),(1,0),(1,1)\}$
- $P\left(\left\{X_{1} \in A_{1}\right\} \cap\left\{X_{2} \in A_{2}\right\}\right)=\frac{1}{4}$
- $P\left(\left\{X_{1} \in A_{1}\right\}\right)=P\left(\left\{X_{2} \in A_{2}\right\}\right)=\frac{1}{2}$

Remark:
How to check independence in practice?

Independence of random variables

Corollary of independence
If X_{1}, \cdots, X_{n} are random variables, then $X_{1}, X_{2}, \cdots, X_{n}$ are independent if

$$
P\left(X_{1} \leq x_{1}, \cdots, X_{n} \leq x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \leq x_{i}\right)
$$

Independence of random variables

Corollary of independence
If X_{1}, \cdots, X_{n} are random variables, then $X_{1}, X_{2}, \cdots, X_{n}$ are independent if

$$
P\left(X_{1} \leq x_{1}, \cdots, X_{n} \leq x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \leq x_{i}\right)
$$

Remark:

Independence of discrete random variables
Suppose X_{1}, \cdots, X_{n} can only take values from $\left\{a_{1}, \cdots\right\}$, then X_{i} 's are independent if

$$
P\left(\cap\left\{X_{i}=a_{i}\right\}\right)=\prod_{i=1}^{n} P\left(X_{i}=a_{i}\right)
$$

Problem Set

Problem 1: Give an example where the events are pairwise independent but not mutually independent.

Problem 2: Verify that the measure $\mu(\cdot)$ induced by $P(\cdot)$ is a probability measure on \mathcal{R}.

Problem 3: Prove properties 3-5 of CDF $F(\cdot)$.
Problem 4: Bob and Alice are playing a game. They alternatively keep tossing a fair coin and the first one to get a H wins. Does the person who plays first have a better chance at winning?

