UNIVERSITY OF
TORONTO

Statistical Sciences

DoSS Summer Bootcamp Probability Module 4

Miaoshiqi (Shiki) Liu
University of Toronto
July 18, 2022

Recap

Learnt in last module:

- Discrete probability
\triangleright Classical probability
\triangleright Combinatorics
\triangleright Common discrete random variables
- Continuous probability
\triangleright Geometric probability
\triangleright Common continuous random variables
- Exponential family

Outline

- Joint and marginal distributions
\triangleright Joint cumulative distribution function
\triangleright Independence of continuous random variables
- Conditional distribution
- Functions of random variables
\triangleright Convolutions
\triangleright Change of variables
\triangleright Order statistics

Joint and marginal distributions

Random vector: joint behaviour of multivariate random variables

Joint and marginal distributions

Random vector: joint behaviour of multivariate random variables
Joint cumulative distribution function
Consider a random vector $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$, the joint cumulative distribution function of $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ is defined by:

$$
F_{X_{1}, X_{2}, \cdots, X_{d}}\left(x_{1}, x_{2}, \cdots, x_{d}\right)=\mathbb{P}\left[X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{d} \leq x_{d}\right]
$$

Joint and marginal distributions

Random vector: joint behaviour of multivariate random variables

Joint cumulative distribution function

Consider a random vector $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$, the joint cumulative distribution function of $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ is defined by:

$$
F_{X_{1}, X_{2}, \cdots, X_{d}}\left(x_{1}, x_{2}, \cdots, x_{d}\right)=\mathbb{P}\left[X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{d} \leq x_{d}\right]
$$

Remark:

For discrete random vector, it suffices to find the joint probability mass function

$$
p_{X_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n}\right)=\mathrm{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{n}=x_{n}\right), \quad x_{i} \in \mathbb{R}
$$

and

$$
\mathbb{P}\left(\left(X_{1}, \cdots, X_{n}\right) \in C\right)=\sum_{\left(x_{1}, \cdots, x_{n}\right) \in C} p_{X_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n}\right) .
$$

Joint and marginal distributions

Remark:

For continuous random vector, consider the joint probability density function.

Joint probability density function

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial^{n} F_{X_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{1} \ldots \partial x_{n}}, \quad x_{i} \in \mathbb{R} .
$$

Similarly,

$$
\mathbb{P}\left(\left(X_{1}, \cdots, X_{n}\right) \in C\right)=\int_{\left(x_{1}, \cdots, x_{n}\right) \in C} f_{X_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n}\right) d x_{1} d x_{2} \cdots d x_{n}
$$

Joint and marginal distributions

Consider the special case of C where $X_{1}, \cdots, X_{i-1}, X_{i+1}, \cdots, X_{n}$ are allowed to take any possible values:

- Discrete case

$$
\mathbb{P}\left(X_{i}=x_{i}\right)=\mathbb{P}\left(X_{i}=x_{i}, X_{j} \in \mathbb{R}, j \neq i\right)=\sum_{x_{j}, j \neq i} p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right) .
$$

- Continuous case

$$
\begin{aligned}
\mathbb{P}\left(X_{i} \leq x_{i}\right) & =\mathbb{P}\left(X_{i} \leq x_{i}, X_{j} \in \mathbb{R}, j \neq i\right) \\
& =\int_{-\infty}^{x_{i}}\left(\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_{1}, \ldots, X_{n}}\left(t_{1}, \ldots, t_{n}\right) d t_{1} \cdots d t_{i-1} d t_{i+1} \cdots d t_{n}\right) d t_{i}
\end{aligned}
$$

Joint and marginal distributions

Taking the derivative regarding x_{i}, this gives us the marginal probability density function.

Marginal probability density function

$$
f_{X_{i}}\left(x_{i}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \cdots, x_{i}, \cdots, x_{n}\right) d x_{1} \cdots d x_{i-1} d x_{i+1} \cdots d x_{n}
$$

Joint and marginal distributions

Taking the derivative regarding x_{i}, this gives us the marginal probability density function.

Marginal probability density function

$$
f_{X_{i}}\left(x_{i}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \cdots, x_{i}, \cdots, x_{n}\right) d x_{1} \cdots d x_{i-1} d x_{i+1} \cdots d x_{n}
$$

Remark:

Marginal probability mass function (density function) of X_{i} is obtained by summing (integrating) the joint probability over all the other dimensions.

Joint and marginal distributions

Example: Draws from an urn

Suppose each of two urns contains twice as many red balls as blue balls, and no others, and suppose one ball is randomly selected from each urn, with the two draws independent of each other. Let A and B be discrete random variables associated with the outcomes of the draw from the first urn and second urn respectively. 1 represents a draw of red ball, while 0 represents a draw of blue ball.

	1	0	$\mathbb{P}(B)$
1	$\frac{4}{9}$	$\frac{2}{9}$	$\frac{2}{3}$
0	$\frac{2}{9}$	$\frac{1}{9}$	$\frac{1}{3}$
$\mathbb{P}(A)$	$\frac{2}{3}$	$\frac{1}{3}$	1

Table: Joint and marginal pmf of draws from an urn

Joint and marginal distributions

Examples: continuous case

Consider the joint probability density function

$$
f(x, y)= \begin{cases}k x & \text { for } 0<x<1,0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Remark:

- Find k.
- Compute the marginal probability density function of X and Y.

Joint and marginal distributions

Integrate to find the value of k

Marginal density

Joint and marginal distributions

Recap: independence of random variables
Corollary of independence
If X_{1}, \cdots, X_{n} are random variables, then $X_{1}, X_{2}, \cdots, X_{n}$ are independent if

$$
P\left(X_{1} \leq x_{1}, \cdots, X_{n} \leq x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \leq x_{i}\right)
$$

Joint and marginal distributions

Recap: independence of random variables
Corollary of independence
If X_{1}, \cdots, X_{n} are random variables, then $X_{1}, X_{2}, \cdots, X_{n}$ are independent if

$$
P\left(X_{1} \leq x_{1}, \cdots, X_{n} \leq x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \leq x_{i}\right)
$$

Remark:
Suppose X_{1}, \cdots, X_{n} can only take values from $\left\{a_{1}, \cdots\right\}$, then X_{i} 's are independent if

$$
P\left(\cap\left\{X_{i}=a_{i}\right\}\right)=\prod_{i=1}^{n} P\left(X_{i}=a_{i}\right)
$$

Joint and marginal distributions

Remark:

This is equivalent to check whether the joint pmf is always the product of the corresponding marginal pmf.

Generalize this to the continuous version:

Joint and marginal distributions

Remark:

This is equivalent to check whether the joint pmf is always the product of the corresponding marginal pmf.

Generalize this to the continuous version:
Independence of continuous random variables
Suppose X_{1}, \cdots, X_{n} are continuous random variables, then X_{i} 's are independent if

$$
f_{\left(X_{1}, \cdots, x_{n}\right)}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\prod_{i=1}^{n} f_{X_{i}}\left(x_{i}\right)
$$

Conditional distribution

Remark:

Given joint and marginal distributions, consider the conditional behaviour:

Conditional distribution

Remark:

Given joint and marginal distributions, consider the conditional behaviour:

Conditional distribution

For random variables X and Y, the conditional distribution of Y given $X=x$ is defined by

- Discrete case

$$
p_{Y \mid X=x}(y)=\mathbb{P}(Y=y \mid X=x)=\frac{p_{X, Y}(x, y)}{p_{X}(x)}
$$

- Continuous case

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}
$$

Conditional distribution

Remark:

Another look at independence:

- Discrete case:
X and Y are independent
$\Leftrightarrow p_{Y \mid X=x}(y)=p_{Y}(y), \quad \forall x, y$
$\Leftrightarrow p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y), \quad \forall x, y$.
- Continuous case:
X and Y are independent
$\Leftrightarrow f_{Y \mid X}(y \mid x)=f_{Y}(y), \quad \forall x, y$
$\Leftrightarrow f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y), \quad \forall x, y$.

Functions of random variables

Suppose we know the joint distribution of (X, Y), what is the distribution of $Z=X+Y$?

- Discrete case

$$
\mathbb{P}(Z=z)=\sum_{x+y=z} \mathbb{P}(X=x, Y=y)
$$

- Continuous case

$$
\mathbb{P}(Z \leq z)=\int_{x+y \leq z} f_{X, Y}(x, y) d x d y
$$

Remark:
This can be simplified in the independent case.

Functions of random variables

Convolutions of independent random variables
Suppose X and Y are independent, then for $Z=X+Y$,

- Discrete case

$$
\mathbb{P}(Z=z)=\sum_{k=-\infty}^{\infty} \mathbb{P}(X=k) \mathbb{P}(Y=z-k)
$$

- Continuous case

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x
$$

Sketch of proof:

Functions of random variables

Consider a function of random variable, and try to obtain the corresponding distribution function.

Multivariate change-of-variables formula

Suppose \mathbf{X} is an n-dimensional random variable with joint density $f_{\mathbf{X}}(\mathbf{x})$. If $\mathbf{Y}=H(\mathbf{X})$, where H is a bijective, differentiable function, then \mathbf{Y} has density $g_{\mathbf{Y}}(\mathbf{y})$:

$$
g(\mathbf{y})=f\left(H^{-1}(\mathbf{y})\right)\left|\operatorname{det}\left[\left.\frac{d H^{-1}(\mathbf{z})}{d \mathbf{z}}\right|_{\mathbf{z}=\mathbf{y}}\right]\right|
$$

with the differential regarded as the Jacobian of $H(\cdot)$, evaluated at \mathbf{y}.

Functions of random variables

Consider a function of random variable, and try to obtain the corresponding distribution function.

Multivariate change-of-variables formula

Suppose \mathbf{X} is an n-dimensional random variable with joint density $f_{\mathbf{X}}(\mathbf{x})$. If $\mathbf{Y}=H(\mathbf{X})$, where H is a bijective, differentiable function, then \mathbf{Y} has density $g_{\mathbf{Y}}(\mathbf{y})$:

$$
g(\mathbf{y})=f\left(H^{-1}(\mathbf{y})\right)\left|\operatorname{det}\left[\left.\frac{d H^{-1}(\mathbf{z})}{d \mathbf{z}}\right|_{\mathbf{z}=\mathbf{y}}\right]\right|
$$

with the differential regarded as the Jacobian of $H(\cdot)$, evaluated at \mathbf{y}.

Remark:

Bijective property is important.
university of
TORONTO

Functions of random variables

Special case of 2-dimensional vectors

2-dimensional change-of-variables formula

Suppose $\mathbf{X}=\left(X_{1}, X_{2}\right)$ with joint density $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$. If $Y_{1}=H_{1}\left(X_{1}, X_{2}\right)$, $Y_{2}=H_{2}\left(X_{1}, X_{2}\right)$, where H is a bijective, differentiable function, then $\mathbf{Y}=\left(Y_{1}, Y_{2}\right)$ has density $g_{\mathbf{Y}}\left(y_{1}, y_{2}\right)$:

$$
g\left(y_{1}, y_{2}\right)=f_{X_{1}, x_{2}}\left(H_{1}^{-1}\left(y_{1}, y_{2}\right), H_{2}^{-1}\left(y_{1}, y_{2}\right)\right)\left|\frac{\partial H_{1}^{-1}}{\partial y_{1}} \frac{\partial H_{2}^{-1}}{\partial y_{2}}-\frac{\partial H_{1}^{-1}}{\partial y_{2}} \frac{\partial H_{2}^{-1}}{\partial y_{1}}\right|
$$

Remark:

Functions of random variables

Remark:

Every continuous bijective function from \mathbb{R} to \mathbb{R} is strictly monotonic.

Functions of random variables

Remark:

Every continuous bijective function from \mathbb{R} to \mathbb{R} is strictly monotonic.
Special case of 1-dimensional random variable: generalize to monotonic functions

Univariate change-of-variables formula

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a monotonic function on the support of $f_{X}(x)$, then for $Y=g(X)$, the density is:

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d}{d y}\left(g^{-1}(y)\right)\right| .
$$

Functions of random variables

Proof of univariate change-of-variable formula:

Functions of random variables

Order statistics:

For random variables $X_{1}, X_{2}, \cdots, X_{n}$, the order statistics are $X_{(1)} \leq X_{(2)} \leq \cdots X_{(n)}$.

Cumulative distribution functions of order statistics

Consider the case where X_{i} 's are independent identically distributed (i.i.d.) samples with cumulative distribution $F_{X}(x)$, then the CDF of $X_{(r)}$ satisfies

$$
F_{X_{(r)}}(x)=\sum_{j=r}^{n}\binom{n}{j}\left[F_{X}(x)\right]^{j}\left[1-F_{X}(x)\right]^{n-j},
$$

the corresponding probability density function is

$$
f_{X_{(r)}}(x)=\frac{n!}{(r-1)!(n-r)!} f_{X}(x)\left[F_{X}(x)\right]^{r-1}\left[1-F_{X}(x)\right]^{n-r}
$$

Functions of random variables

Special cases of $X_{(1)}$ and $X_{(n)}$:

$$
\begin{gathered}
F_{X_{(n)}}(x)=\mathbb{P}\left(\max \left\{X_{1}, \ldots, X_{n}\right\} \leq x\right)=\left[F_{X}(x)\right]^{n} \\
F_{X_{(1)}}(x)=\mathbb{P}\left(\min \left\{X_{1}, \ldots, X_{n}\right\} \leq x\right)=1-\left[1-F_{X}(x)\right]^{n} .
\end{gathered}
$$

Remark:

For continuous random variable, taking derivatives to obtain the probability density function.

Problem Set

Problem 1: Show that the probability density function of normal distribution $N\left(\mu, \sigma^{2}\right)$ integrates to 1.
(Hint: consider two normal random variables X, Y)
Problem 2: Prove that for X with density function $f_{X}(x)$, the density function of $y=X^{2}$ is

$$
f_{Y}(y)=\frac{1}{2 \sqrt{y}}\left(f_{X}(-\sqrt{y})+f_{X}(\sqrt{y})\right), \quad y \geq 0
$$

(Hint: start by considering the CDF)

Problem Set

Problem 3: Suppose X_{1}, \cdots, X_{n} are i.i.d. sample following Uniform[0, 1] distribution, find the joint probability density function of $\left(X_{(1)}, X_{(n)}\right)$.
(Hint: start by considering the CDF)

