

Statistical Sciences

DoSS Summer Bootcamp Probability Module 7

Miaoshiqi (Shiki) Liu

University of Toronto

July 24, 2022

Recap

Learnt in last module:

- Covariance
 - $\triangleright~$ Covariance as an inner product
 - ▷ Correlation
 - Cauchy-Schwarz inequality
 - > Uncorrelatedness and Independence
- Concentration
 - ▷ Markov's inequality
 - \triangleright Chebyshev's inequality
 - \triangleright Chernoff bounds

Outline

- Stochastic convergence
 - \triangleright Convergence in distribution
 - ▷ Convergence in probability
 - Convergence almost surely
 - \triangleright Convergence in L^p
 - Relationship between convergences

Recall: Convergence

Convergence of a sequence of numbers

A sequence a_1, a_2, \cdots converges to a limit *a* if

 $\lim_{n\to\infty}a_n=a.$

That is, for any $\epsilon > 0$, there exists an $N(\epsilon)$ such that

 $|a_n-a|<\epsilon,\quad\forall n>N(\epsilon).$

Recall: Convergence

Convergence of a sequence of numbers

A sequence a_1, a_2, \cdots converges to a limit *a* if

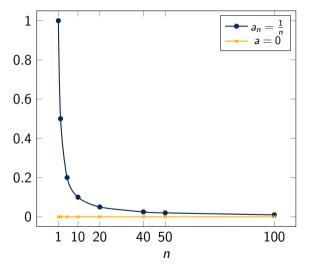
 $\lim_{n\to\infty}a_n=a.$

That is, for any $\epsilon > 0$, there exists an $N(\epsilon)$ such that

 $|a_n-a|<\epsilon,\quad\forall n>N(\epsilon).$

Example: $a_n = \frac{1}{n}$, $\forall \epsilon > 0$, take $N(\epsilon) = \lceil \frac{1}{\epsilon} \rceil$, then for $n > N(\epsilon)$,

$$|a_n-0|=a_n<\epsilon,\quad \lim_{n\to\infty}a_n=0.$$



- Capture the property of a series as $n \to \infty$;
- The limit is something where the series concentrate for large *n*;
- $|a_n a|$ quantifies the closeness of the series and the limit.

Observation: closeness of random variables

Sample mean of i.i.d. random variables

For i.i.d. random variables X_i , $i = 1, \dots, n$ with $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2$, then for the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,

$$\mathbb{E}(ar{X})=\mu, \quad Var(ar{X})=rac{\sigma^2}{n}.$$

Proof:

Example:

Further suppose X_i , $i = 1, \dots, n$ i.i.d. with distribution $\mathcal{N}(\mu, \sigma^2)$, then $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$, so we can draw the probability density plot of \bar{X} .

Example:

Further suppose X_i , $i = 1, \dots, n$ i.i.d. with distribution $\mathcal{N}(\mu, \sigma^2)$, then $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$, so we can draw the probability density plot of \bar{X} .

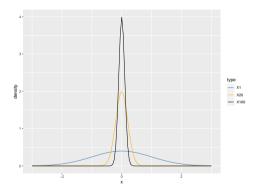


Figure: Probability density curve of sample mean of normal distribution

□ ▶ < 클 ▶ < 클 ▶ < 클 ▶ 를 ∽ Q (~ July 24, 2022 7 / 20

Intuition:

- Series of numbers $a_n \Rightarrow$ Series of random variables X_n ;
- Limit $a \Rightarrow$ Limit X;
- How to quantify the closeness? $(|X_n X|?)$

Intuition:

- Series of numbers $a_n \Rightarrow$ Series of random variables X_n ;
- Limit $a \Rightarrow$ Limit X;
- How to quantify the closeness? $(|X_n X|?)$

Pointwise convergence / Sure convergence

Suppose random variables X_n and X are defined over the same probability space, then we say X_n converges to X pointwise if

$$\lim_{n\to\infty}X_n(\omega)=X(\omega), \,\,\forall\omega\in\Omega.$$

Intuition:

- Series of numbers $a_n \Rightarrow$ Series of random variables X_n ;
- Limit $a \Rightarrow$ Limit X;
- How to quantify the closeness? $(|X_n X|?)$

Pointwise convergence / Sure convergence

Suppose random variables X_n and X are defined over the same probability space, then we say X_n converges to X pointwise if

$$\lim_{n\to\infty}X_n(\omega)=X(\omega),\,\,\forall\omega\in\Omega.$$

8 / 20

Remark:

Incorporate probability measure in some sense.

Alternatives of describing the closeness:

- Utilize CDF: $F_{X_n}(x) F_X(x)$;
- Utilize probability of an event: $\mathbb{P}(|X_n X| > \epsilon)$;
- Utilize the probability over all ω : $\mathbb{P}(\lim_{n\to\infty} X_n(\omega) = X(\omega));$
- Utilize mean/moments: $\mathbb{E}|X_n X|^p$.

Convergence in distribution

A sequence X_1, X_2, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if

$$\lim_{n\to\infty}F_n(x)=F(x),$$

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_n and X, respectively.

Notation: $X_n \xrightarrow{d} X, \quad X_n \xrightarrow{\mathcal{D}} X, \quad X_n \Rightarrow X.$

Convergence in distribution

A sequence X_1, X_2, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if

$$\lim_{n\to\infty}F_n(x)=F(x),$$

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_n and X, respectively.

Notation:

$$X_n \xrightarrow{d} X, \quad X_n \xrightarrow{\mathcal{D}} X, \quad X_n \Rightarrow X.$$

Remark:

 X_n and X do not need to be defined on the same probability space.

July 24, 2022 10 / 20

Example: Let $X_n = Z + \frac{1}{n}$, where $Z \sim \mathcal{N}(0, 1)$, then • $X_n \xrightarrow{d} Z$, • $X_n \xrightarrow{d} -Z$, • $X_n \xrightarrow{d} Y$, $Y \sim \mathcal{N}(0, 1)$.

Proof:

Convergence in probability

A sequence X_n of random variables converges in probability towards the random variable X if for all $\epsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\big(|X_n-X|>\epsilon\big)=0.$$

Notation: $X_n \xrightarrow{p} X$, $X_n \xrightarrow{P} X$.

Remark: X_n and X need to be defined on the same probability space.

Examples:

• Let
$$X_n = Z + \frac{1}{n}$$
, where $Z \sim \mathcal{N}(0, 1)$, then $X_n \xrightarrow{P} Z$.

Proof:

• Let $X_n = Z + Y_n$, where $Z \sim \mathcal{N}(0, 1)$, $\mathbb{E}(|Y_n|) = \frac{1}{n}$, then $X_n \xrightarrow{P} Z$. **Proof:**

Convergence almost surely

A sequence X_n of random variables converges almost surely or almost everywhere or with probability 1 or strongly towards X means that

$$\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=\mathbb{P}\left(\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\right)=1.$$

Notation: $X_n \xrightarrow{a.s.} X_{\cdot}$

Remark: X_n and X need to be defined on the same probability space.

Examples:

• Let
$$X_n = Z + rac{1}{n}$$
, where $Z \sim \mathcal{N}(0, 1)$, then $X_n \xrightarrow{a.s.} Z$.

Proof:

• Let $X_n = Z + Y_n$, where $Z \sim \mathcal{N}(0, 1)$, $\mathbb{E}(|Y_n|) = \frac{1}{n}$, do we have $X_n \xrightarrow{a.s.} Z$? **Proof:**

Convergence in L^{p}

A sequence $\{X_n\}$ of random variables converges in L_p to a random variable X, $p \ge 1$, if

$$\lim_{n\to\infty}\mathbb{E}|X_n-X|^p=0$$

Notation: $X_n \xrightarrow{L^p} X_{\cdot}$

Remark: X_n and X need to be defined on the same probability space.

Examples:

• Let
$$X_n = Z + \frac{1}{n}$$
, where $Z \sim \mathcal{N}(0, 1)$, then $X_n \xrightarrow{L^p} Z$.
Proof:

• Let $X_n = Z + Y_n$, where $Z \sim \mathcal{N}(0, 1)$, $\mathbb{E}(|Y_n|^p) = \frac{1}{n}$, then $X_n \xrightarrow{L^p} Z$. **Proof:**

Relationship between convergences (on complete probability space):

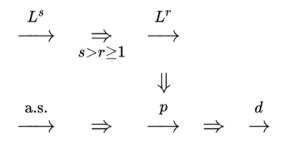


Figure: relationship between convergences

□ ▶ < 클 ▶ < 클 ▶ < 클 ▶ 를 ∽ Q (~ July 24, 2022 18 / 20

Highlights:

• Almost sure convergence implies convergence in probability:

$$X_n \xrightarrow{\text{a.s.}} X \Rightarrow X_n \xrightarrow{P} X;$$

• Convergence in probability implies convergence in distribution:

$$X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X;$$

• If X_n converges in distribution to a constant c, then X_n converges in probability to c:

$$X_n \xrightarrow{d} c \Rightarrow X_n \xrightarrow{P} c$$
, provided *c* is a constant.

□ ▶ < 금 ▶ < 볼 ▶ < 볼 ▶ 볼 > ♀ ♀ July 24, 2022 19 / 20

Problem Set

Problem 1: Prove that on a complete probability space, if $X_n \xrightarrow{L^p} X$, then $X_n \xrightarrow{P} X$. (Hint: use Markov's inequality)

Problem 2: Let X_1, \dots, X_n be i.i.d. random variables with Bernoulli(p) distribution, and $X \sim Bernoulli(p)$ is defined on the same probability space, independent with X_i 's. Does X_n converge in probability to X?

Problem 3: Give an example where X_n converges in distribution to X, but not in probability.

