

Statistical Sciences

DoSS Summer Bootcamp Probability Module 10

Ichiro Hashimoto

University of Toronto

July 28, 2023

July 28, 2023 1/9

Recap

Learnt in last module:

• Convergence of functions of random variables

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

July 28, 2023

3

2/9

- Slutsky's theorem
- ▷ Continuous mapping theorem
- Laws of large numbers
 - ⊳ WLLN
 - ⊳ SLLN
 - > Glivenko-Cantelli theorem
- Central limit theorem

Outline

- Limit Theorems and Counterexamples
 - ▷ Law of Large Numbers
 - Monotone Convergence Theorem
 - Dominated Convergence Theorem
 - $\triangleright \ \ \mathsf{More \ about \ }\mathsf{CLT}$

Recall: For the law of large numbers to hold, the assumption $E|X| < \infty$ is crucial.

Law of Large Numbers fail for infinite mean i.i.d. random variables

If $X_1X_2,...$ are i.i.d. to X with $E|X_i| = \infty$, then for $S_n = X_1 + \cdots + X_n$, $P(\lim_{n\to\infty} S_n/n \in (-\infty,\infty)) = 0$.

Proof: Omitted

Monotone Convergence Theorem

If $X_n \ge c$ and $X_n \nearrow X$, then $EX_n \nearrow EX$

Usage:

Monotone Convergence Theorem

If $X_n \ge 0$ and $X_n \nearrow X$, then $EX_n \nearrow EX$

Counterexample when X_n is not lower bounded:

<ロト < 回 ト < 三 ト < 三 ト < 三 ト 三 の へ () July 28, 2023 6/9

Dominated Convergence Theorem

If $X_n \to X$ a.s. and $|X_n| \leq Y$ a.s. for all *n* and *Y* is integrable, then $EX_n \to EX$

Usage:

Dominated Convergence Theorem

If $X_n \to X$ a.s. and $|X_n| \leq Y$ a.s. for all *n* and *Y* is integrable, then $EX_n \to EX$

Counterexample when X_n is not dominated by an integrable random variable:

More about CLT: Delta method

Suppose X_n are i.i.d. random variables with $EX_n = 0$, $VAR(X_n) = \sigma^2 > 0$. Let g be a measurable function that is differentiable at 0 with $g'(0) \neq 0$. Then

$$\sqrt{n}\left(g\left(rac{\sum_{k=1}^{n}X_{k}}{n}-g(0)
ight)
ight)
ightarrow \mathsf{N}(0,\sigma^{2}g'(0)^{2})$$
 weakly.

Proof under stronger assumption: Here, we suppose *g* is continuously differentiable on \mathbb{R} . If you are interested in a general proof refer to Robert Keener's *Theoretical Statistics*.

