

Statistical Sciences

# DoSS Summer Bootcamp Probability Module 10

Ichiro Hashimoto

University of Toronto

July 28, 2023

July 28, 2023 1/9

# Recap

#### Learnt in last module:

• Convergence of functions of random variables

( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( ) < ( )

July 28, 2023

3

2/9

- Slutsky's theorem
- ▷ Continuous mapping theorem
- Laws of large numbers
  - ⊳ WLLN
  - ▷ SLLN
  - > Glivenko-Cantelli theorem
- Central limit theorem



# Outline

- Limit Theorems and Counterexamples
  - ▷ Law of Large Numbers
  - Monotone Convergence Theorem
  - Dominated Convergence Theorem
  - $\triangleright \ \ \mathsf{More \ about \ }\mathsf{CLT}$



**Recall:** For the law of large numbers to hold, the assumption  $E|X| < \infty$  is crucial.

Law of Large Numbers fail for infinite mean i.i.d. random variables

If  $X_1X_2,...$  are i.i.d. to X with  $E|X_i| = \infty$ , then for  $S_n = X_1 + \cdots + X_n$ ,  $P(\lim_{n\to\infty} S_n/n \in (-\infty,\infty)) = 0$ .

**Proof: Omitted** 



÷

Monotone Convergence Theorem  
If 
$$X_n \ge c$$
 and  $X_n \nearrow X$ , then  $EX_n \nearrow EX$   
Usage: Let  $Y_n$  by  $p(X_n: \frac{1}{n^2}) = P = [-(p(X_n = 0))$   
Note  $0 \le X_n \le \frac{1}{n^2}$ ,  $EX_n = \frac{1}{n^2}$   
Let  $S_n = \frac{1}{c^2} \times c$ . Then  $S_n$  is unsufficient increasing size  $X_n \ge 0$ .  
Also,  $S_n \ge 0$ .  
Further more  $S_n \le \frac{1}{c^2} + \frac{1}{c^2} + \frac{1}{2} + \frac{1}{$ 

Monotone Convergence Theorem  
If 
$$X_n \ge 0^{\circ}$$
 and  $X_n \nearrow X$ , then  $EX_n \nearrow EX$   
Counterexample when  $X_n$  is not lower bounded:  
 $X_0 = 0$  otherrow.  
 $L \rightarrow X_0$  he  $[P(X_0 = -2^{\circ}) = 2^{-1} \quad for \quad i = (j_2), ----$   
 $Then X_0$  is not lower hound of  $EX_0 = -cb$ ,  $X_0 < 0$   
 $L \rightarrow X_0 = m^{-1} X_0$ .  
 $Then X_0$  is menotene increases since  
 $X_{hei} - X_h = \frac{X_0}{mt_1} - \frac{X_0}{m} = -\frac{X_0}{m(mt_1)} \ge 0$ 

July 28, 2023

6/9

Furthermon, 
$$\lim_{n \to \infty} X_n = 0$$
 since  $\lim_{n \to \infty} X_n = \lim_{n \to \infty} \frac{X_n}{n} = 0$   
However,  $E X_n = n^{-1} E X_0 = -\infty$   
Then for,  $\lim_{n \to \infty} E X_n = -\infty \neq 0 = E \lim_{n \to \infty} X_n$ 

EITICOD

### Dominated Convergence Theorem

If  $X_n \to X$  a.s. and  $|X_n| \leq Y$  a.s. for all *n* and *Y* is integrable, then  $EX_n \to EX$ 

Usage: Xn is domicated by integrable T.

If 
$$M(f) \in Ee^{\chi f}$$
 moment generating function of  $\chi$ .  
Suppose  $(M(f) < CO)$  for any  $f \in [-E, E]$ .  
Then  $\frac{1}{4}M(f) \Big[ = E\chi \Big]$ 



(Proof) For h E (-E/2, 4/2),



$$|V_{atent} + \frac{e^{hx} - i}{b}| = \left|\frac{hx \cdot e^{3x}}{b}\right| = \left|\frac{hx \cdot e^{3x}}{b}\right|$$

$$= [x] e^{3x}$$

Weth that 
$$|u| \leq e^{a} + e^{a}$$
  
Thurndan,  $|Y|e^{3Y} = \frac{2}{\xi} \cdot \frac{2}{\xi} |X| \cdot e^{3X}$   
 $\leq \frac{2}{\xi} \cdot (e^{\frac{5}{2}x} + e^{-\frac{5}{2}x}) \cdot e^{3X}$   
 $= \frac{2}{\xi} (e^{(3+\frac{5}{2})x} + e^{(3-\frac{5}{2})x})$   
 $N_{h}h that 3 \pm \frac{2}{\xi} \in (-\xi, \xi)$   
 $\leq (-\frac{2}{\xi} (e^{\xi x} + e^{-\xi x}))$   
 $i'stegrable.$   
Therefore, we can use the dominated currenge then to  $\frac{e^{hr}-1}{h}$ 



# **Dominated Convergence Theorem** If $X_n \to X$ a.s. and $|X_n| \leq Y$ a.s. for all *n* and *Y* is integrable, then $EX_n \to EX$ Counterexample when $X_n$ is not dominated by an integrable random variable: 1) the Contorcupte for monotoge convergea theorem. 2) Let Se (0,1) with IP (we (a,b]) = b-a if 0 < a < h < 1 ('uniform masure)





#### More about CLT: Delta method

Suppose  $X_n$  are i.i.d. random variables with  $EX_n = 0$ ,  $VAR(X_n) = \sigma^2 > 0$ . Let g be a measurable function that is differentiable at 0 with  $g'(0) \neq 0$ . Then

$$\sqrt{n}\left(g\left(\frac{\sum_{k=1}^{n}X_{k}}{n}\right)-g(0)
ight)
ight)
ightarrow N(0,\sigma^{2}g'(0)^{2})$$
 weakly.

**Proof under stronger assumption:** Here, we suppose g is continuously differentiable on  $\mathbb{R}$ . If you are interested in a general proof refer to Robert Keener's *Theoretical Statistics*.



$$\sqrt{n} \left( 25\right) - 200 = 2(C_{1}) \cdot 5\sqrt{x}$$

$$\rightarrow 2(0) \rightarrow N(0, 0^{*})$$

$$a.5. \qquad h_{7} CL7$$

by  $S[utsh_3]s$  theorem.  $\underline{A}$ ,  $\mathcal{N}(0, \sigma^2 \overline{\mathcal{B}(0)}^{\perp})$