Statistical Sciences

DoSS Summer Bootcamp Probability Module 1

Ichiro Hashimoto
University of Toronto
July 11, 2023

Roadmap

A bridge connecting undergraduate probability and graduate probability

Undergraduate-level probability

- Concrete;
- Examples and scenarios;
- Rely on computation...

Roadmap

A bridge connecting undergraduate probability and graduate probability

Undergraduate-level probability

- Concrete;
- Examples and scenarios;
- Rely on computation...

Graduate-level probability

- Abstract (measure theory);
- Laws and properties;
- Rely on construction and inference...

Roadmap

Figure: Roadmap

Outline

- Measurable spaces
\triangleright Sample Space
$\triangleright \sigma$-algebra
- Probability measures
\triangleright Measures on σ-field
\triangleright Basic results
- Conditional probability
\triangleright Bayes' rule
\triangleright Law of total probability

Measurable spaces

Sample Space

The sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Toss a coin: $\{H, T\}=\Omega$.
- Roll a die: $\{1,2,3,4,5,6\}=\Omega$

Measurable spaces

Sample Space

The sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Toss a coin: $\{H, T\}$
- Roll a die: $\{1,2,3,4,5,6\}$

Event

An event is a collection of possible outcomes (subset of the sample space).
Examples:

$$
\text { If }|\Omega|=m \text {, then }
$$

- Get head when tossing a coin: $\{H\} \subset\{H, \tau\}=\Omega$
- Get an even number when rolling a die: $\{2,4,6\} \subset\{1,2,3,4,5,6\} 2 \Omega$ in tot .

$$
\begin{aligned}
& \Omega=\frac{\{11, T\}}{4: 2^{2}} \\
& \Omega=\{11\},\{\tau\},\{11, T\} \\
& \Omega=\{1,2,3,4,5,6\} \rightarrow 2^{6} \text { subsets }
\end{aligned}
$$

for each $i \in \Omega . \rightarrow \frac{i \in A \text { or } i \in A}{2 \text { choices for }}$ each i'
$\Longrightarrow \quad 2^{6}$ subsets in total.
ex) Tossing a coin twice

$$
\begin{aligned}
\Omega & =\{H H, H T, T H, T T\} \rightarrow \text { discnte. case. } \\
\mathbb{P}(H H) & =\mathbb{P}(H T)=\mathbb{P}(T H)=\mathbb{P}(T T)=\frac{1}{4}
\end{aligned}
$$

Lat $X=$ the number of H

$$
\begin{aligned}
& \mathbb{P}(x=0)=\mathbb{P}(x=2)=V_{4} \\
& \mathbb{P}(x=1)=V_{2} \\
1= & \mathbb{P}(x=0)+\mathbb{P}(x=1)+\mathbb{P}(x=2) \\
E x= & \frac{1}{4} \cdot 0+\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2=1
\end{aligned}
$$

$e \times 2)$ Lit $x \sim N\left(\mu, \sigma^{2}\right)$ ganssian/normal
Density $p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$

$$
\begin{aligned}
& 1=\int_{-\infty}^{\infty} p(x) d x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \operatorname{eep}\left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x \\
& E X=\int_{-\infty}^{\infty} x p(x) d x=\int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{2 \pi x^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x=\mu .
\end{aligned}
$$

Discrete $\quad \mathbb{P}(x \leq h)=\sum_{l=1}^{n} \mathbb{P}(x=l)$

$$
E X=\sum_{k=1}^{\infty} k \mathbb{P}(x=k)
$$

Continuous

$$
\begin{aligned}
& \operatorname{IP}(x \leqslant x)=\int_{-\infty}^{x} p(x) d x \\
& E x=\int_{-\infty}^{\infty} x p(x) d x
\end{aligned}
$$

Quostivn: Is there con way to explain those two in a unified manner?

Observatim If $A \cap B=\varnothing$, then $\mathbb{P}(A \cup B)$

$$
(A, B \text { are disjoint }) \quad=\mathbb{P}(A)+\mathbb{P}(B)
$$

For a disconte cufe, $\left\{x=1 _\right\}$are disiont.

$$
1=\sum_{i=1}^{\infty} I P(X=\Omega) \leftarrow \text { countalic summation }
$$

But for catimans case,

$$
\mathbb{P}(x=x)=0
$$

Theretome
\Longrightarrow summation of uncountables doesn't wark wel
\Longrightarrow miryt be butter to focus
countuble suns.

Construction of Probuhiliy theory
Out line.

1) Define. the collection of substs of Ω, if $(\gamma$-algehe), on whoh we can "Prohability meusure".
2) Define prohahility measue as a fuctur

$$
\mathbb{P}: \hbar \rightarrow[0,1]
$$

which has couctulle additivity".
3) $\underset{\Omega}{\Omega, \pi, \mathbb{N})}$ is callal "Probabilin'y triple" $\underset{\substack{\text { sapte } \\ \text { span }}}{ }$ aralgehra prohabrlídy

Measurable spaces
σ－algebra
A σ－algebra（ σ－field） \mathcal{F} on Ω is a nonempty collection of subsets of Ω such that
－If $A \in \mathcal{F}$ ，then $A^{c} \in \mathcal{F}, \quad(i)$
－If $A_{1}, A_{2}, \cdots \in \mathcal{F}$ ，then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$ ．（ii）
Remark：$\varnothing, \Omega \in \mathcal{F}$
（Prut）
lout $A \in \widehat{万}$ ．

$$
\text { (i) } \Rightarrow A^{c} \in \hbar
$$

$$
\text { (ii) } \Rightarrow \frac{A \cup A^{c}}{=\Omega} \in \hbar \quad \therefore \Omega \in \hbar
$$

$$
\begin{aligned}
& \text { - } \bigcap_{c \rightarrow 1}^{\infty} A_{i} \in \hbar \\
& \text { (Proof) } \\
& \bigcap_{i=1}^{n} A_{i}=\bigcap_{i=1}^{\infty} A_{i} \\
& A_{i}=\Omega \text { for } i>h \\
& \bigcap_{i=1}^{\infty} A_{c}=\left(\bigcup_{i=1}^{\infty} A_{c}^{c}\right)^{c} \\
& \text { i) } \Rightarrow A_{c}{ }^{c} \in \hbar . \\
& \text { (ii) } \Rightarrow \quad \bigcup_{i=1}^{\infty} A_{i}^{c} \in \hbar \text {. } \\
& \text { (i) } \Rightarrow \bigcap_{i=1}^{\infty} A_{c}=\left(\bigcup_{c=1}^{u g} A_{i}{ }^{c}\right)^{c} \in 末 \text {. }
\end{aligned}
$$

$$
\therefore\{H=\{H=\{H, H T, T H, T T\}
$$

$F=$ a-algeloga geveratal by $\{H 11\}$

$$
T=\{\phi,\{H 1\},\{H T, T H, T T\}, \Omega\}
$$

Pan $\begin{gathered}\text { in } \\ \text { m } \\ \mathbb{P}\end{gathered}(\not)=0, \mathbb{P}\{H H\}=\frac{1}{4}$

$$
\{H H, H T\} \& \mathbb{S} \quad \mathbb{P}\{H T, T H, T T\}=\frac{3}{4}, \mathbb{P}(\Omega)=1
$$

Probability measures

Measures on σ-field

A function $\mu: \mathcal{F} \rightarrow R^{+} \cup\{+\infty\}$ is called a measure if

- $\mu(\varnothing)=0$,
- If $A_{1}, A_{2}, \cdots \in \mathcal{F}$ and $A_{i} \cap A_{j}=\varnothing$, then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)$. (i)

If $\mu(\Omega)=1$, then μ is called a probability measure.
comatable additrvi't?

Probability measures

Measures on σ-field

A function $\mu: \mathcal{F} \rightarrow R^{+} \cup\{+\infty\}$ is called a measure if

- $\mu(\varnothing)=0$,
dissut
- If $A_{1}, A_{2}, \cdots \in \mathcal{F}$ and $A_{i} \cap A_{j}=\varnothing$, then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)$.

If $\mu(\Omega)=1$, then μ is called a probability measure.

Properties:

- Monotonicity: $A \subseteq B \quad \Rightarrow \quad \mu(A) \leq \mu(B)$
- Subadditivity: $A \subseteq \cup_{i=1}^{\infty} A_{i} \Rightarrow \mu(A) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)$
- Continuity from below: $A_{i} \nearrow A \Rightarrow \mu\left(A_{i}\right) \nearrow \mu(A)$
- Continuity from above: $A_{i} \searrow A$ and $\mu\left(A_{i}\right)<\infty \quad \Rightarrow \quad \mu\left(A_{i}\right) \searrow \mu(A)$

Proof: Continuity from brolow.
If $A_{i} \in$ 有, $A_{1} \subset A_{2} \subset A_{3} \subset \cdots$

$$
\begin{aligned}
& \bigcup_{c i 1}^{\infty} A_{c}=A \\
& \text { Lu } B_{i}=A_{i} \backslash A_{i-1}, i \geq 2 \text {. } \\
& B_{1}=A_{1} \\
& \text { Then } B_{i} \text { are drsjout. } \\
& B_{c}=A_{i} \cap A_{i-1}^{c} \in \hbar_{1} \\
& \bigcup_{i=1}^{\infty} B_{i}=\bigcup_{i=1}^{\infty} A_{i}=A \\
& \mu(A)=\mu\left(\bigcup_{i=1}^{\infty} B_{t}\right) \\
& =\sum_{c^{2}=1}^{\infty} \mu\left(B_{i}\right) \cdots(x)
\end{aligned}
$$

\int
Note the $\mu\left(B_{i}\right)=\mu\left(A_{\sigma}\right)-\mu\left(A_{i n}\right)$
Thinfore, $\sum_{i=1}^{k_{2}} \mu\left(B_{i}\right)=\sum_{i=2}^{\beta_{2}}\left(\mu\left(A_{0}\right)-\mu\left(A_{i 1}\right)\right)+\mu\left(A_{1}\right): \mu\left(A_{1}\right)$
That mans, (*) be canes

$$
\mu(A)=\lim _{l \rightarrow \infty} \mu\left(A_{\mu}\right)
$$

Coutimuty from ahove

$$
\begin{gathered}
\left.\mu\left(A_{1}\right)<\infty, \quad A_{1} \supset A_{2}\right) A_{3} \supset \cdots \cdot \\
A=\bigcap_{i=1}^{\infty} A_{i} \\
R_{i}=A_{1}-A_{i}
\end{gathered}
$$

Then $B_{1} \subset B_{2} \subset \cdots \cdot$

$$
\bigcup_{i n}^{\infty} B_{i}=A_{1} \backslash A
$$

By the contionity frem helow,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mu\left(B_{n}\right)=\mu\left(\bigcup_{(21}^{\infty} B_{r}\right)=\mu\left(A_{1} \backslash A\right) \\
&=\mu\left(A_{l}\right)-\mu(A) \\
& \text { Notn th }+\mu\left(B_{r}\right)=\mu\left(A_{1}\right)-\mu\left(A_{2}\right) \\
& \text { So } \lim _{k_{n} \rightarrow \infty}\left\{\mu\left(A_{1}\right)-\mu\left(A_{n}\right)\right\}=\mu\left(A_{l}\right)-\mu(A) \\
& \therefore \lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(A)
\end{aligned}
$$

$(\Omega, \quad \pi,(p)$ Probability triple.
suple o-algebra Probebilib
spae o-algebra measue.
"Coutrability" was the key.
1). Define σ-algehra F on which a protuatrify can defind.
2) Defin a protability measue \mathbb{P}

$$
\text { as } \mathbb{P}: f \rightarrow[0,1]
$$

Question: How can (Ω, \bar{p}, ρ) provides un: fied theory?

Ohservation $X: \Omega \rightarrow \mathbb{R}$ randen veriable.

$$
\begin{aligned}
\Omega & =\{x \in \mathbb{R}\} \\
& =\bigcup_{i^{i}-\infty}^{\infty}\{x \in[i,(+1)\}
\end{aligned}
$$

By contathe additivity iuplos

$$
\left.1=\mathbb{P}(\Omega)=\sum_{i=-\infty}^{\infty} \mathbb{P}(x \in[i, i j))\right)
$$

$\Omega=\{x \in \mathbb{R}\}$
$=\bigcup_{i=-\infty}^{\infty} \underbrace{\left\{x \in\left[\frac{i}{n}, \frac{i+1}{n}\right)\right\}}_{\text {becomes fincer as } n \lambda \infty} \in P$?

$$
1=P(\Omega)=\sum_{i=-\infty}^{\infty} \mathbb{N}\left(x \in\left[\frac{i}{n}, \frac{i+1}{n}\right)\right)
$$

Approxination of Expectation

$$
E X \approx \sum_{i=\infty}^{\infty} \frac{i}{n} \cdot \mathbb{P}\left(x \in\left[\frac{i}{n}, \frac{i+1}{n}\right)\right)
$$

pridges hetwreen discrete probahilily and catinums.

We can define EX from this obser vation

$$
E X=\lim _{n \rightarrow \infty} \sum_{i=-\infty}^{\infty} \frac{i}{n} \mathbb{P}\left(x \in\left(\frac{i}{i}, \frac{i-1}{n}\right)\right)
$$

Thrs is analogm to Riemannien sum for defing Reieqtanuron integral.

Differea hetween Riemennion 5 mm .

Riemam

Measue theory

$$
E X=\lim _{n-n} \sum_{i=\infty}^{\infty} \frac{i}{n} \mathbb{P}\left(x \in\left\{\frac{i}{n}, \frac{(n)}{n}\right)\right)=\int_{\Omega} x d \mathbb{P}
$$

We can show tht

$$
\left(\begin{array}{ll}
E X=\sum_{i=1}^{\infty} h_{i} \mathbb{P}\left(X=h_{c}\right) & \text { fr diccrete case. } \\
E X=\int_{-\infty}^{\infty} x p(x) d x & \text { for centinuous case. }
\end{array}\right.
$$

To moker the chove argunt valid we need te choos appropirate F.

Def (Boral suts)
Define. a g-clgehr on \mathbb{R} as "the suallest" σ - algabra that cortairs all intervals. on \mathbb{R}.

We denate this r-algetra by R or R $B \in \mathbb{R}$ is called a Borul int.

Then define τ on $\Omega<s$

$$
\frac{T=\left\{x^{-1}(B): B \in \mathbb{R}\right\}}{\text { ensures }\left\{x \in\left[\frac{i}{n}, \frac{c+1}{n}\right)\right\} \in \mathbb{F} .}
$$

Revork R contains all metervals

- \mathbb{R} contaras. a any open r-ts.y any clased suts, ang silgle poirts, any sourkhle seets.
$(\Omega, \pi, \mathbb{P})$

$$
x: \Omega \rightarrow \mathbb{R}
$$

We chose $\tilde{\phi}$ so the $X^{-1}(\beta) \in F$ for or $B \in R$.

Daf A Suction $x: \Omega \rightarrow \mathbb{R}$ is called a raudom varable if

$$
x^{-1}(B) \in \hbar \text { for dy } B \in \mathbb{R}
$$

We also soy tit X is measarctle.

$$
\mathbb{P}(x \in A)=\mathbb{P}\left(x^{-1}(A)\right) \quad A \in \mathbb{R}
$$

Lut us viev this as a fuction from $\mathbb{R} \rightarrow[0,1]$

$$
\text { i.e. } \quad \mu(A)=\mathbb{P}\left(X^{-1}(A)\right)
$$

Than μ is a prababiliy measur on \mathbb{R}.
In other works, through X, a new probabilit, me asm is induad on R.
We call μ a probubility mecine indead by $X,(\Omega, F,(T)$

$$
(\Omega, \tilde{F}, \mathbb{P}) \xrightarrow{X} \underset{\text { neer triple is indeced. }}{(\mathbb{R}, \mathbb{R}, \mu)}
$$

Probability measures

Proof of continuity from below:

Probability measures

Proof of continuity from above:

Remark: $\mu\left(A_{i}\right)<\infty$ is vital.

Probability measures

Examples:

$\Omega=\left\{\omega_{1}, \omega_{2}, \cdots\right\}, A=\left\{\omega_{a_{1}}, \cdots, \omega_{a_{i}}, \cdots\right\} \Rightarrow \mu(A)=\sum_{j=1}^{\infty} \mu\left(\omega_{a_{j}}\right)$.
Therefore, we only need to define $\mu\left(\omega_{j}\right)=p_{j} \geq 0$.
If further $\sum_{i=1}^{\infty} p_{j}=1$, then μ is a probability measure.

- Toss a coin:
- Roll a die:

Conditional probability

Original problem:

- What is the probability of some event A ?
- $P(A)$ is determined by our probability measure.

New problem:

- Given that B happens, what is the probability of some event A ?
- $P(A \mid B)$ is the conditional probability of the event A given B.

Conditional probability

Original problem:

- What is the probability of some event A ?
- $P(A)$ is determined by our probability measure.

New problem:

- Given that B happens, what is the probability of some event A ?
- $P(A \mid B)$ is the conditional probability of the event A given B.

Example:

- Roll a die: $P(\{2\} \mid$ even number $)$

Conditional probability

Bayes' rule

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad P(B)>0
$$

Remark: Does conditional probability $P(\cdot \mid B)$ satisfy the axioms of a probability measure?

Conditional probability

Multiplication rule

$$
P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Generalization:
Law of total probability
Let $A_{1}, A_{2}, \cdots, A_{n}$ be a partition of m, such that $P\left(A_{i}\right)>0$, then

$$
P(B)=\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)
$$

Problem Set

Problem 1: Prove that for a σ-field \mathcal{F}, if $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\cap{ }_{i=1}^{\infty} A_{i} \in \mathcal{F}$.
Problem 2: Prove monotonicity and subadditivity of measure μ on σ-field.
Problem 3: (Monty Hall problem) Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?
(Assumptions: the host will not open the door we picked and the host will only open the door which has a goat.)

