

Statistical Sciences

DoSS Summer Bootcamp Probability Module 1

Ichiro Hashimoto

University of Toronto

July 11, 2023

□ ▶ < @ ▶ < ≣ ▶ < ≣ ▶ ≡ ∽ Q (~ July 11, 2023 1/1

Roadmap

A bridge connecting undergraduate probability and graduate probability

Undergraduate-level probability

- Concrete;
- Examples and scenarios;
- Rely on computation...

Roadmap

A bridge connecting undergraduate probability and graduate probability

Undergraduate-level probability

- Concrete;
- Examples and scenarios;
- Rely on computation...

Graduate-level probability

- Abstract (measure theory);
- Laws and properties;
- Rely on construction and inference...

Roadmap

Figure: Roadmap

< □ ▷ < 큔 ▷ < 클 ▷ < 클 ▷ < 클 ▷ 르 ∽ Q (~ July 11, 2023 3/1

Outline

- Measurable spaces
 - ▷ Sample Space
 - $\triangleright \sigma$ -algebra
- Probability measures
 - \triangleright Measures on σ -field
 - Basic results
- Conditional probability
 - ▷ Bayes' rule
 - \triangleright Law of total probability

< ∃ >

July 11, 2023

э

4/1

Measurable spaces

Sample Space

The sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Toss a coin: $\{H, T\} = \Omega$.
- Roll a die: {1,2,3,4,5,6} <u>S</u>

Measurable spaces

Sample Space

The sample space Ω is the set of all possible outcomes of an experiment.

Examples:

- Toss a coin: $\{H, T\}$
- Roll a die: {1,2,3,4,5,6}

Event

An event is a collection of possible outcomes (subset of the sample space).

Examples:

If (sign and then there 2ⁿ events

- Get head when tossing a coin: $\{H\} \subset \{H, T\} \leq \Omega$
- Get an even number when rolling a die: $\{2, 4, 6\} \subset \{1, 2, 3, 4, 5, 6\} \subset \Omega$

Q= {H,T} 4, {13, {7}, {1,1} $4:2^{2}$ De {1,2, 3, 4, 5,6} -7 26 subsets for each iE D. -> CEA or iGA 2 choices for each i -) 2⁶ subsets in total

ex1) Tossing a coin twice D: {HH, HI, TH, TT} -> disorte. are. $|P(HH) = |P(H1) = |P(TH) = |P(TT) = \frac{1}{4}$ Lat X = the number of H p(x=0) = p(x=2) = 1/4P(k=1) = 1/2| = P(x=0) + P(x=1) + P(x=2) $E_{X} = \frac{1}{4} \cdot 6 + \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 = 1$ ex2) Lt X ~ N(M, 02) Fangsian/hormal Density $p(r_k) = \frac{1}{\sqrt{2\pi r^2}} \exp\left(-\frac{(xm)^2}{2r^2}\right)$ $\left| = \int_{-\infty}^{\infty} p(\chi) \, d\chi = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi} r^2} \exp\left(-\frac{(\chi_{2\nu})^2}{2r^2}\right) d\chi$ $[= X = \int_{-\infty}^{\infty} \chi p(x) d\chi = \int_{-\infty}^{\infty} \chi \cdot \frac{1}{1270^2} \exp\left(-\frac{(X-w)^2}{20^2}\right) d\chi = \mathcal{M}.$ Discrete $P(X \in L) = \int_{1}^{L} P(X = L)$ $EX = \int_{2^{-1}}^{\infty} b \left[P(X = L) \right]$ Continuous $\left[P(X \in X) = \int_{-\infty}^{X} p(X) dX \right]$ $EX = \int_{-\infty}^{\infty} \gamma p(X) dX$

Is there my way to explain those two Questiny! in a inified manner?

Observation If
$$A \cap B = A$$
, then $|P(A \cup B)|$
(A,B one disjoint) $= |P(A) + |P(B)|$
For a discate case, $\{x = k\}$ are disjoint.
 $| = \begin{pmatrix} \infty \\ k = 1 \end{pmatrix} (P(x = k)) \in Counterline summation
But for antinans case,
 $|P(x = x) = 0$
 $|x \in P|$
Therefore U uncounterline summation$

$$\frac{2}{2} \left(\sum_{x \in p} \left(p(x - x) \right) \right) = \sum_{x \in p} 0 \stackrel{2}{=} 0$$

$$\overline{}$$

Summation of unconstables doesn't work well

-) might be better to focus counteble suss.

Measurable spaces

$\sigma\text{-algebra}$

A σ -algebra (σ -field) $\mathcal F$ on Ω is a non-empty collection of subsets of Ω such that

• If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$, (i)

• If
$$A_1, A_2, \dots \in \mathcal{F}$$
, then $\cup_{i=1}^{\infty} A_i \in \mathcal{F}$. (ii)

Remark: $\varnothing, \Omega \in \mathcal{F}$ Contable unron (Praif) (Int AG F. (i) =) ACER $(X) \rightarrow A \cup A^{c} \in \mathcal{F}$ 1 DEF ΩE $(i) = f : \Omega^{\circ} \in \mathcal{F}$ ▲ 国 ▶ ▲ 国 ▶ 国 July 11, 2023

6/1

Measures on σ -field

A function $\mu: \mathcal{F} \rightarrow \mathit{R}^+ \cup \{+\infty\}$ is called a measure if

- $\mu(arnothing)=0$, Ch
- If $A_1, A_2, \dots \in \mathcal{F}$ and $A_i \cap A_j = \emptyset$, then $\mu(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$. (ii)

If $\mu(\Omega) = 1$, then μ is called a probability measure.

Measures on σ -field

A function $\mu:\mathcal{F}\to {\it R}^+\cup\{+\infty\}$ is called a measure if

- $\mu(\varnothing) = 0,$ observed
- If $A_1, A_2, \dots \in \mathcal{F}$ and $A_i \cap A_j = \emptyset$, then $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$.

If $\mu(\Omega) = 1$, then μ is called a probability measure.

Properties:

- Monotonicity: $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$
- Subadditivity: $A \subseteq \cup_{i=1}^{\infty} A_i \quad \Rightarrow \quad \mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$
- Continuity from below: $A_i \nearrow A \Rightarrow \mu(A_i) \nearrow \mu(A)$
- Continuity from above: $A_i \searrow A$ and $\mu(A_i) < \infty \implies \mu(A_i) \searrow \mu(A)$

Proof: Continuity from bolow.
If
$$A_{c} \in \overline{F}$$
, $A \in CA_{c} \subset A_{3} \subset \cdots$
 $\bigcup A_{c} = A$.
 $\bigcup A_{c} = A$.
 $\bigcup B_{c} = A_{c} \setminus A_{c-1}, C \ge 2$.
 $B_{1} = A_{1}$
 $\Box = A_{1}$

$$\mu(A) = \mu(\bigcup_{c_1}^{\omega} B_t)$$
$$= \sum_{c_1}^{\infty} \mu(B_t) - - - - (\mathbf{x})$$

Note that $\mathcal{M}(Bc) = \mathcal{M}(Ac) - \mathcal{M}(Acn)$ Therefore, $\sum_{c_1}^{k} \mathcal{M}(Bc) = \sum_{c_2}^{k} (\mathcal{M}(Ac) - \mathcal{M}(Acn)) 1 \mathcal{M}(A_1) = \mathcal{M}(Ac)$ These mans, (k) be comes $\mathcal{M}(A) = \lim_{h \to \infty} \mathcal{M}(A_h)$ Contractly from above

 $\mu(A_1) < \infty, \quad A_1 \supset (A_2) \land A_3 \supset \cdots \land A_n$ $A = \bigcap_{G'_1} A_{C'_1}$

 $Bc = A_1 - Ac$ $Then \quad B_1 \subset B_2 \subset --- \bigcup_{cm}^{\infty} Bc = A_1 \setminus A$

By the containing from below, $\lim_{A \to 10} \mathcal{M}(B_{4}) = \mathcal{M}((\bigcup_{i=1}^{4} B_{7}) = \mathcal{M}(A_{1} \setminus A))$ $= \mathcal{M}(A_{1}) - \mathcal{M}(A)$ $= \mathcal{M}(A_{1}) - \mathcal{M}(A)$

(I, F, (P). Probability triple. IL, " N N C robeh-loss robeh-loss robeh-loss neasure. Suple space " Contrability" was the key. Define O-algebra F on which a probability can defind. 2) Defin a probability measur IP as P:F->[9] Question: How can (1, F, P) provides un: fred theory?

Observation X: S -> IP random variable. Q = { x ep } $= \bigcup_{i^2 - \omega} \left\{ x \in [i, (i]) \right\}$ By contable additivity inplug $|=|n(Q)=\sum_{i=0}^{\infty}|P(x\in[i,G_1)|)$ Q= { XER} $: \bigcup_{i=\infty}^{\infty} \left\{ x \in \left\{ \frac{i}{m}, \frac{\dot{c}(i)}{n} \right\} \right\} \in \mathbb{F}_{i}^{2}$ recomes finar as M Noo

$$| = P(S) = \sum_{r \to \infty} P(X \in [\frac{1}{n}, \frac{ct}{m}])$$

Approximation of Expectation

$$EX \approx \sum_{n=1}^{\infty} \frac{1}{n} \cdot P(x \in (\frac{1}{n}, \frac{1}{n}))$$

bridge hetereen discrete probability
and cartinuus.
We can define EX from this
observation
 $EX = \lim_{n \to \infty} \sum_{n=1}^{\infty} \frac{1}{n} P(x \in [\frac{1}{n}, \frac{1}{n}))$

this is analogue to Riemannica sum for defuz Récamman integral.

$$E\chi = \lim_{n \to \infty} \tilde{\Sigma} \cdot \frac{1}{n} \mathbb{P}(\chi \in [\frac{1}{n}, \frac{c_{0}}{n}]) = \int_{\Omega} \chi dP$$

We can show that

$$E X = \int_{C^{1}}^{\infty} h_{i} \left[p(X;h_{i}) \right] \quad fr \text{ discrete case.}$$

$$E X = \int_{C^{1}}^{\infty} x p(x) dx \quad \text{for continuous case.}$$

Then define
$$\overline{F}$$
 on Ω is

$$\overline{F} = \{ x^{-1}(B) : B \in R \}$$
eventures $\{ x \in [\frac{1}{2}, \frac{CH}{2} \} \} \in \overline{F}.$
Repute R . contains all intervals
$$+ \left(\begin{array}{c} \operatorname{Complexits}, \\ \operatorname{Commutable innorm} & \operatorname{of intervals} \\ \operatorname{Commutable intersection} \\ \end{array} \right)$$

$$+ fruthe combinistic of these.$$

$$R contains \left(\begin{array}{c} \operatorname{Complexits}, \\ \operatorname{Commutable intersection} \\ \end{array} \right)$$

$$+ fruthe combinistic of these.$$

$$R contains \left(\begin{array}{c} \operatorname{Complexits}, \\ \operatorname{Commutable intersection} \\ \end{array} \right)$$

$$+ fruthe combinistic of these.$$

(Ω, Ã, P) X: Ω→R. We chose F 10 tht X⁻(R) ∈ F for any BER.

A Suction X: I -> IP is called a random Vet varrable if X-'(B) EF for ay BER. We also roy that X is measurable. $P(X \in A) = P(X'(A)) A \in \mathcal{R}.$ Let us view this as a factor from R -> [0,1] $\mu(A) = \Pr(X^{-1}(A))$ i.e. then M is a probability measur on R. In other worlds, through X, a new probability measure is induced on R. We call a probability measure induced by X (I.F.P.) $(\mathcal{Q},\mathcal{F},\mathbb{P}) \xrightarrow{\times} (\mathbb{P},\mathbb{R},\mathbb{P})$ new triple is induced.

Proof of continuity from below:

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ▶ こ つへで July 11, 2023 8/1

Proof of continuity from above:

Remark: $\mu(A_i) < \infty$ is vital.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Examples:

$$\begin{split} \Omega &= \{\omega_1, \omega_2, \cdots\}, \, A = \{\omega_{a_1}, \cdots, \omega_{a_i}, \cdots\} \Rightarrow \mu(A) = \sum_{j=1}^{\infty} \mu(\omega_{a_j}). \end{split}$$
Therefore, we only need to define $\mu(\omega_j) = p_j \ge 0.$ If further $\sum_{i=1}^{\infty} p_j = 1$, then μ is a probability measure.

• Toss a coin:

• Roll a die:

Original problem:

- What is the probability of some event A?
- P(A) is determined by our probability measure.

New problem:

- Given that *B* happens, what is the probability of some event *A*?
- $P(A \mid B)$ is the conditional probability of the event A given B.

Original problem:

- What is the probability of some event A?
- P(A) is determined by our probability measure.

New problem:

• Given that *B* happens, what is the probability of some event *A*?

11/1

• $P(A \mid B)$ is the conditional probability of the event A given B.

Example:

• Roll a die: $P(\{2\} | \text{even number})$

Bayes' rule

$$P(A \mid B) = rac{P(A \cap B)}{P(B)}, \quad P(B) > 0$$

Remark: Does conditional probability $P(\cdot | B)$ satisfy the axioms of a probability measure?

12/1

Multiplication rule

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

Generalization:

Law of total probability

Let A_1, A_2, \cdots, A_n be a partition of ω , such that $P(A_i) > 0$, then $\bigcap_{i=1}^n P(A_i)P(B \mid A_i)$

Problem Set

Problem 1: Prove that for a σ -field \mathcal{F} , if $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$.

Problem 2: Prove monotonicity and subadditivity of measure μ on σ -field.

Problem 3: (Monty Hall problem) Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice? (Assumptions: the host will not open the door we picked and the host will only open the door which has a goat.)

