

Statistical Sciences

DoSS Summer Bootcamp Probability Module 4

Ichiro Hashimoto

University of Toronto

July 17, 2023

□ ▶ 《 @ ▶ 《 ≧ ▶ 《 ≧ ▶ 《 ≧ ♪ ○ Q (~ July 17, 2023 1/1

Recap

Learnt in last module:

- Discrete probability
 - ▷ Classical probability
 - Combinatorics
 - Common discrete random variables
- Continuous probability
 - ▷ Geometric probability
 - Common continuous random variables

()

July 17, 2023

э

2/1

• Exponential family

Outline

- Joint and marginal distributions
 - $\,\triangleright\,$ Joint cumulative distribution function
 - Independence of continuous random variables
- Conditional distribution
- Functions of random variables
 - \triangleright Convolutions
 - Change of variables
 - Order statistics

Random vector: joint behaviour of multivariate random variables

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ > ○ Q (~ July 17, 2023 4/1

Random vector: joint behaviour of multivariate random variables

Joint cumulative distribution function

Consider a random vector $(X_1, X_2, ..., X_d)$, the joint cumulative distribution function of $(X_1, X_2, ..., X_d)$ is defined by:

$$F_{X_1,X_2,\cdots,X_d}(x_1,x_2,\cdots,x_d) = \mathbb{P}[X_1 \le x_1, X_2 \le x_2, \dots, X_d \le x_d].$$

Random vector: joint behaviour of multivariate random variables

Joint cumulative distribution function

Consider a random vector $(X_1, X_2, ..., X_d)$, the joint cumulative distribution function of $(X_1, X_2, ..., X_d)$ is defined by:

$$\mathcal{F}_{X_1,X_2,\cdots,X_d}(x_1,x_2,\cdots,x_d) = \mathbb{P}[X_1 \leq x_1,X_2 \leq x_2,\ldots,X_d \leq x_d].$$

Remark:

For discrete random vector, it suffices to find the joint probability mass function

$$p_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=\mathrm{P}(X_1=x_1,X_2=x_2,\cdots,X_n=x_n), \quad x_i\in\mathbb{R},$$

and

$$\mathbb{P}((X_1,\cdots,X_n)\in C)=\sum_{(x_1,\cdots,x_n)\in C}p_{X_1,\ldots,X_n}(x_1,\ldots,x_n).$$

July 17, 2023 4/1

Remark:

For continuous random vector, consider the joint probability density function.

Joint probability density function

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n)=\frac{\partial^n F_{X_1,\ldots,X_n}(x_1,\ldots,x_n)}{\partial x_1\ldots\partial x_n}, \quad x_i\in\mathbb{R}.$$

Similarly,

$$\mathbb{P}((X_1,\cdots,X_n)\in C)=\int_{(x_1,\cdots,x_n)\in C}f_{X_1,\ldots,X_n}(x_1,\ldots,x_n)\ dx_1dx_2\cdots dx_n.$$

 ↓<</td>
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓

Consider the special case of C where $X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n$ are allowed to take any possible values:

• Discrete case

$$\mathbb{P}(X_i = x_i) = \mathbb{P}(X_i = x_i, X_j \in \mathbb{R}, j \neq i) = \sum_{x_j, j \neq i} p_{X_1, \dots, X_n}(x_1, \dots, x_n).$$

• Continuous case

$$\mathbb{P}(X_i \leq x_i) = \mathbb{P}(X_i \leq x_i, X_j \in \mathbb{R}, j \neq i) = \int_{-\infty}^{x_i} \left(\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1, \dots, X_n}(t_1, \dots, t_n) \ dt_1 \cdots dt_{i-1} dt_{i+1} \cdots dt_n \right) \ dt_i.$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ July 17, 2023 6/1

Taking the derivative regarding x_i , this gives us the marginal probability density function.

Marginal probability density function

$$f_{X_i}(x_i) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1,\ldots,X_n}(x_1,\cdots,x_i,\cdots,x_n) \ dx_1\cdots dx_{i-1}dx_{i+1}\cdots dx_n.$$

Taking the derivative regarding x_i , this gives us the marginal probability density function.

Marginal probability density function

$$f_{X_i}(x_i) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1,\ldots,X_n}(x_1,\cdots,x_i,\cdots,x_n) dx_1\cdots dx_{i-1} dx_{i+1}\cdots dx_n.$$

Remark:

Marginal probability mass function (density function) of X_i is obtained by summing (integrating) the joint probability over all the other dimensions.

Example: Draws from an urn

Suppose each of two urns contains twice as many red balls as blue balls, and no others, and suppose one ball is randomly selected from each urn, with the two draws independent of each other. Let A and B be discrete random variables associated with the outcomes of the draw from the first urn and second urn respectively. 1 represents a draw of red ball, while 0 represents a draw of blue ball.

	1	0	$\mathbb{P}(B)$
1	$\frac{4}{9}$	<u>2</u> 9	$\frac{2}{3}$
0	<u>2</u> 9	$\frac{1}{9}$	$\frac{1}{3}$
$\mathbb{P}(A)$	$\frac{2}{3}$	$\frac{1}{3}$	1

Table: Joint and marginal pmf of draws from an urn

Examples: continuous case

Consider the joint probability density function

$$f(x, y) = \begin{cases} kx & \text{ for } 0 < x < 1, 0 < y < 1\\ 0 & \text{ otherwise} \end{cases}$$

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊒ > < □ >

9/1

Remark:

- Find k.
- Compute the marginal probability density function of X and Y.

Integrate to find the value of k

Marginal density

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ > ○ Q (?) July 17, 2023 10/1

Recap: independence of random variables

Corollary of independence

If X_1, \cdots, X_n are random variables, then X_1, X_2, \cdots, X_n are independent if

$$P(X_1 \leq x_1, \cdots, X_n \leq x_n) = \prod_{i=1}^n P(X_i \leq x_i)$$

Recap: independence of random variables

Corollary of independence

If X_1, \cdots, X_n are random variables, then X_1, X_2, \cdots, X_n are independent if

$$P(X_1 \leq x_1, \cdots, X_n \leq x_n) = \prod_{i=1}^n P(X_i \leq x_i)$$

Remark:

Suppose X_1, \dots, X_n can only take values from $\{a_1, \dots\}$, then X_i 's are independent if

$$P(\cap \{X_i = a_i\}) = \prod_{i=1}^n P(X_i = a_i).$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで July 17, 2023 11/1

Remark:

This is equivalent to check whether the joint pmf is always the product of the corresponding marginal pmf.

Generalize this to the continuous version:

□ ▶ < ∄ ▶ < ≣ ▶ < ≣ ▶ July 17, 2023 12/1

Remark:

This is equivalent to check whether the joint pmf is always the product of the corresponding marginal pmf.

Generalize this to the continuous version:

Independence of continuous random variables

Suppose X_1, \dots, X_n are continuous random variables, then X_i 's are independent if

$$f_{(X_1,\cdots,X_n)}(x_1,x_2,\cdots,x_n) = \prod_{i=1}^n f_{X_i}(x_i).$$

Conditional distribution

Remark:

Given joint and marginal distributions, consider the conditional behaviour:

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 3 ○ ℃ July 17, 2023 13/1

Conditional distribution

Remark:

Given joint and marginal distributions, consider the conditional behaviour:

Conditional distribution

For random variables X and Y, the conditional distribution of Y given X = x is defined by

Discrete case

$$p_{Y|X=x}(y) = \mathbb{P}(Y=y \mid X=x) = \frac{p_{X,Y}(x,y)}{p_X(x)}$$

Continuous case

$$f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)}.$$

□ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 볼 ∽ < July 17, 2023 13/1

Conditional distribution

Remark:

Another look at independence:

• Discrete case:

X and Y are independent $\Leftrightarrow p_{Y|X=x}(y) = p_Y(y), \quad \forall x, y$ $\Leftrightarrow p_{X,Y}(x, y) = p_X(x)p_Y(y), \quad \forall x, y.$

Continuous case:

 $\begin{array}{l} X \text{ and } Y \text{ are independent} \\ \Leftrightarrow f_{Y|X}(y \mid x) = f_Y(y), \quad \forall x, y \\ \Leftrightarrow f_{X,Y}(x,y) = f_X(x)f_Y(y), \quad \forall x, y. \end{array}$

Suppose we know the joint distribution of (*X*, *Y*), what is the distribution of Z = X + Y?

• Discrete case

$$\mathbb{P}(Z=z) = \sum_{x+y=z} \mathbb{P}(X=x, Y=y)$$

• Continuous case

$$\mathbb{P}(Z \leq z) = \int_{x+y \leq z} f_{X,Y}(x,y) \, dx dy$$

Remark:

This can be simplified in the independent case.

Convolutions of independent random variables

Suppose X and Y are independent, then for Z = X + Y,

• Discrete case

$$\mathbb{P}(Z=z)=\sum_{k=-\infty}^{\infty}\mathbb{P}(X=k)\mathbb{P}(Y=z-k).$$

Continuous case

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

Sketch of proof:

Consider a function of random variable, and try to obtain the corresponding distribution function.

Multivariate change-of-variables formula

Suppose **X** is an *n*-dimensional random variable with joint density $f_{\mathbf{X}}(\mathbf{x})$. If $\mathbf{Y} = H(\mathbf{X})$, where *H* is a bijective, differentiable function, then **Y** has density $g_{\mathbf{Y}}(\mathbf{y})$:

$$g(\mathbf{y}) = f\left(H^{-1}(\mathbf{y})
ight) \left|\det\left[\left.rac{dH^{-1}(\mathbf{z})}{d\mathbf{z}}
ight|_{\mathbf{z}=\mathbf{y}}
ight]
ight|$$

with the differential regarded as the Jacobian of $H(\cdot)$, evaluated at **y**.

Consider a function of random variable, and try to obtain the corresponding distribution function.

Multivariate change-of-variables formula

Suppose **X** is an *n*-dimensional random variable with joint density $f_{\mathbf{X}}(\mathbf{x})$. If $\mathbf{Y} = H(\mathbf{X})$, where *H* is a bijective, differentiable function, then **Y** has density $g_{\mathbf{Y}}(\mathbf{y})$:

$$g(\mathbf{y}) = f\left(H^{-1}(\mathbf{y})
ight) \left|\det\left[\left.rac{dH^{-1}(\mathbf{z})}{d\mathbf{z}}
ight|_{\mathbf{z}=\mathbf{y}}
ight]
ight|$$

July 17, 2023

17/1

with the differential regarded as the Jacobian of $H(\cdot)$, evaluated at **y**.

Remark: Bijective property is important.

Special case of 2-dimensional vectors

2-dimensional change-of-variables formula

Suppose $\mathbf{X} = (X_1, X_2)$ with joint density $f_{X_1, X_2}(x_1, x_2)$. If $Y_1 = H_1(X_1, X_2)$, $Y_2 = H_2(X_1, X_2)$, where H is a bijective, differentiable function, then $\mathbf{Y} = (Y_1, Y_2)$ has density $g_{\mathbf{Y}}(y_1, y_2)$:

$$g(y_1, y_2) = f_{X_1, X_2} \left(H_1^{-1}(y_1, y_2), H_2^{-1}(y_1, y_2) \right) \left| \frac{\partial H_1^{-1}}{\partial y_1} \frac{\partial H_2^{-1}}{\partial y_2} - \frac{\partial H_1^{-1}}{\partial y_2} \frac{\partial H_2^{-1}}{\partial y_1} \right|.$$

Remark:

Remark:

Every continuous bijective function from $\mathbb R$ to $\mathbb R$ is strictly monotonic.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ July 17, 2023 19/1

Remark:

Every continuous bijective function from $\mathbb R$ to $\mathbb R$ is strictly monotonic.

Special case of 1-dimensional random variable: generalize to monotonic functions

Univariate change-of-variables formula

Let $g : \mathbb{R} \to \mathbb{R}$ be a monotonic function on the support of $f_X(x)$, then for Y = g(X), the density is:

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy}(g^{-1}(y)) \right|.$$

Proof of univariate change-of-variable formula:

< □ ▶ < 클 ▶ < 클 ▶ < 클 ▶ ミ ラ Q (~ July 17, 2023 20/1

Order statistics:

For random variables X_1, X_2, \dots, X_n , the order statistics are $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$.

Cumulative distribution functions of order statistics

Consider the case where X_i 's are independent identically distributed (i.i.d.) samples with cumulative distribution $F_X(x)$, then the CDF of $X_{(r)}$ satisfies

$$F_{X_{(r)}}(x) = \sum_{j=r}^{n} {n \choose j} [F_X(x)]^j [1 - F_X(x)]^{n-j},$$

the corresponding probability density function is

$$f_{X_{(r)}}(x) = \frac{n!}{(r-1)!(n-r)!} f_X(x) [F_X(x)]^{r-1} [1 - F_X(x)]^{n-r}.$$

Special cases of $X_{(1)}$ and $X_{(n)}$:

$$F_{X_{(n)}}(x) = \mathbb{P}(\max\{X_1, \dots, X_n\} \le x) = [F_X(x)]^n,$$

$$F_{X_{(1)}}(x) = \mathbb{P}(\min\{X_1, \dots, X_n\} \le x) = 1 - [1 - F_X(x)]^n.$$

Remark:

For continuous random variable, taking derivatives to obtain the probability density function.

Problem Set

Problem 1: Show that the probability density function of normal distribution $N(\mu, \sigma^2)$ integrates to 1.

(Hint: consider two normal random variables X, Y)

Problem 2: Prove that for X with density function $f_X(x)$, the density function of $y = X^2$ is

$$f_Y(y)=rac{1}{2\sqrt{y}}(f_X(-\sqrt{y})+f_X(\sqrt{y})),\quad y\geq 0.$$

(Hint: start by considering the CDF)

Problem Set

Problem 3: Suppose X_1, \dots, X_n are i.i.d. sample following Uniform[0, 1] distribution, find the joint probability density function of $(X_{(1)}, X_{(n)})$. (Hint: start by considering the CDF)

