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Recap

Learnt in last module:

• Discrete probability
▷ Classical probability
▷ Combinatorics
▷ Common discrete random variables

• Continuous probability
▷ Geometric probability
▷ Common continuous random variables

• Exponential family
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Outline

• Joint and marginal distributions
▷ Joint cumulative distribution function
▷ Independence of continuous random variables

• Conditional distribution
• Functions of random variables

▷ Convolutions
▷ Change of variables
▷ Order statistics
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Joint and marginal distributions
Random vector: joint behaviour of multivariate random variables

Joint cumulative distribution function
Consider a random vector (X1,X2, . . . ,Xd), the joint cumulative distribution function
of (X1,X2, . . . ,Xd) is defined by:

FX1,X2,··· ,Xd(x1, x2, · · · , xd) = P[X1 ≤ x1,X2 ≤ x2, . . . ,Xd ≤ xd].

Remark:
For discrete random vector, it suffices to find the joint probability mass function

pX1,...,Xn(x1, . . . , xn) = P(X1 = x1,X2 = x2, · · · ,Xn = xn), xi ∈ R,

and
P((X1, · · · ,Xn) ∈ C) =

∑
(x1,··· ,xn)∈C

pX1,...,Xn(x1, . . . , xn).

July 17, 2023 4 / 1



Joint and marginal distributions
Random vector: joint behaviour of multivariate random variables

Joint cumulative distribution function
Consider a random vector (X1,X2, . . . ,Xd), the joint cumulative distribution function
of (X1,X2, . . . ,Xd) is defined by:

FX1,X2,··· ,Xd(x1, x2, · · · , xd) = P[X1 ≤ x1,X2 ≤ x2, . . . ,Xd ≤ xd].

Remark:
For discrete random vector, it suffices to find the joint probability mass function

pX1,...,Xn(x1, . . . , xn) = P(X1 = x1,X2 = x2, · · · ,Xn = xn), xi ∈ R,

and
P((X1, · · · ,Xn) ∈ C) =

∑
(x1,··· ,xn)∈C

pX1,...,Xn(x1, . . . , xn).

July 17, 2023 4 / 1



Joint and marginal distributions
Random vector: joint behaviour of multivariate random variables

Joint cumulative distribution function
Consider a random vector (X1,X2, . . . ,Xd), the joint cumulative distribution function
of (X1,X2, . . . ,Xd) is defined by:

FX1,X2,··· ,Xd(x1, x2, · · · , xd) = P[X1 ≤ x1,X2 ≤ x2, . . . ,Xd ≤ xd].

Remark:
For discrete random vector, it suffices to find the joint probability mass function

pX1,...,Xn(x1, . . . , xn) = P(X1 = x1,X2 = x2, · · · ,Xn = xn), xi ∈ R,

and
P((X1, · · · ,Xn) ∈ C) =

∑
(x1,··· ,xn)∈C

pX1,...,Xn(x1, . . . , xn).

July 17, 2023 4 / 1



Joint and marginal distributions

Remark:
For continuous random vector, consider the joint probability density function.

Joint probability density function

fX1,...,Xn(x1, . . . , xn) =
∂nFX1,...,Xn(x1, . . . , xn)

∂x1 . . . ∂xn
, xi ∈ R.

Similarly,

P((X1, · · · ,Xn) ∈ C) =
∫
(x1,··· ,xn)∈C

fX1,...,Xn(x1, . . . , xn) dx1dx2 · · · dxn.
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Joint and marginal distributions

Consider the special case of C where X1, · · · ,Xi−1,Xi+1, · · · ,Xn are allowed to take
any possible values:

• Discrete case

P(Xi = xi) = P(Xi = xi,Xj ∈ R, j ̸= i) =
∑
xj,j̸=i

pX1,...,Xn(x1, . . . , xn).

• Continuous case

P(Xi ≤ xi) = P(Xi ≤ xi,Xj ∈ R, j ̸= i)

=

∫ xi

−∞

(∫ ∞

−∞
· · ·

∫ ∞

−∞
fX1,...,Xn(t1, . . . , tn) dt1 · · · dti−1dti+1 · · · dtn

)
dti.
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Joint and marginal distributions

Taking the derivative regarding xi, this gives us the marginal probability density
function.
Marginal probability density function

fXi(xi) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX1,...,Xn(x1, · · · , xi, · · · , xn) dx1 · · · dxi−1dxi+1 · · · dxn.

Remark:
Marginal probability mass function (density function) of Xi is obtained by summing
(integrating) the joint probability over all the other dimensions.
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Joint and marginal distributions
Example: Draws from an urn
Suppose each of two urns contains twice as many red balls as blue balls, and no others,
and suppose one ball is randomly selected from each urn, with the two draws
independent of each other. Let A and B be discrete random variables associated with
the outcomes of the draw from the first urn and second urn respectively. 1 represents a
draw of red ball, while 0 represents a draw of blue ball.

1 0 P(B)

1 4
9

2
9

2
3

0 2
9

1
9

1
3

P(A) 2
3

1
3 1

Table: Joint and marginal pmf of draws from an urn
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Joint and marginal distributions

Examples: continuous case
Consider the joint probability density function

f(x, y) =
{

kx for 0 < x < 1, 0 < y < 1
0 otherwise

Remark:

• Find k.
• Compute the marginal probability density function of X and Y.
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Joint and marginal distributions

Integrate to find the value of k

Marginal density
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Joint and marginal distributions
Recap: independence of random variables

Corollary of independence
If X1, · · · ,Xn are random variables, then X1,X2, · · · ,Xn are independent if

P(X1 ≤ x1, · · · ,Xn ≤ xn) =
n∏

i=1
P(Xi ≤ xi)

Remark:
Suppose X1, · · · ,Xn can only take values from {a1, · · · }, then Xi’s are independent if

P(∩{Xi = ai}) =
n∏

i=1
P(Xi = ai).
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Joint and marginal distributions

Remark:
This is equivalent to check whether the joint pmf is always the product of the
corresponding marginal pmf.

Generalize this to the continuous version:

Independence of continuous random variables
Suppose X1, · · · ,Xn are continuous random variables, then Xi’s are independent if

f(X1,··· ,Xn)(x1, x2, · · · , xn) =
n∏

i=1
fXi(xi).
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Conditional distribution

Remark:
Given joint and marginal distributions, consider the conditional behaviour:

Conditional distribution
For random variables X and Y, the conditional distribution of Y given X = x is defined
by

• Discrete case
pY|X=x(y) = P(Y = y | X = x) = pX,Y(x, y)

pX(x)
.

• Continuous case
fY|X(y | x) = fX,Y(x, y)

fX(x)
.
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Conditional distribution

Remark:
Another look at independence:

• Discrete case:
X and Y are independent

⇔ pY|X=x(y) = pY(y), ∀x, y
⇔ pX,Y(x, y) = pX(x)pY(y), ∀x, y.

• Continuous case:
X and Y are independent

⇔ fY|X(y | x) = fY(y), ∀x, y
⇔ fX,Y(x, y) = fX(x)fY(y), ∀x, y.
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Functions of random variables

Suppose we know the joint distribution of (X,Y), what is the distribution of
Z = X + Y?

• Discrete case
P(Z = z) =

∑
x+y=z

P(X = x,Y = y)

• Continuous case
P(Z ≤ z) =

∫
x+y≤z

fX,Y(x, y) dxdy

Remark:
This can be simplified in the independent case.
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Functions of random variables
Convolutions of independent random variables
Suppose X and Y are independent, then for Z = X + Y,

• Discrete case
P(Z = z) =

∞∑
k=−∞

P(X = k)P(Y = z − k).

• Continuous case

fZ(z) =
∞∫

−∞

fX(x) fY(z − x) dx

Sketch of proof:
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Functions of random variables

Consider a function of random variable, and try to obtain the corresponding
distribution function.
Multivariate change-of-variables formula
Suppose X is an n-dimensional random variable with joint density fX(x). If Y = H(X),
where H is a bijective, differentiable function, then Y has density gY(y):

g(y) = f
(

H−1(y)
) ∣∣∣∣∣det

[
dH−1(z)

dz

∣∣∣∣
z=y

]∣∣∣∣∣
with the differential regarded as the Jacobian of H(·), evaluated at y.

Remark:
Bijective property is important.
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Functions of random variables

Special case of 2-dimensional vectors

2-dimensional change-of-variables formula
Suppose X = (X1,X2) with joint density fX1,X2(x1, x2). If Y1 = H1(X1,X2),
Y2 = H2(X1,X2), where H is a bijective, differentiable function, then Y = (Y1,Y2) has
density gY(y1, y2):

g(y1, y2) = fX1,X2

(
H−1

1 (y1, y2),H−1
2 (y1, y2)

) ∣∣∣∣∣∂H−1
1

∂y1

∂H−1
2

∂y2
−

∂H−1
1

∂y2

∂H−1
2

∂y1

∣∣∣∣∣ .
Remark:
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Functions of random variables

Remark:
Every continuous bijective function from R to R is strictly monotonic.

Special case of 1-dimensional random variable: generalize to monotonic
functions
Univariate change-of-variables formula
Let g : R → R be a monotonic function on the support of fX(x), then for Y = g(X),
the density is:

fY(y) = fX
(
g−1(y)

) ∣∣∣∣ d
dy

(
g−1(y)

)∣∣∣∣ .
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Functions of random variables
Proof of univariate change-of-variable formula:

July 17, 2023 20 / 1



Functions of random variables
Order statistics:
For random variables X1,X2, · · · ,Xn, the order statistics are X(1) ≤ X(2) ≤ · · ·X(n).

Cumulative distribution functions of order statistics
Consider the case where Xi’s are independent identically distributed (i.i.d.) samples
with cumulative distribution FX(x), then the CDF of X(r) satisfies

FX(r)(x) =
n∑

j=r

(
n
j

)
[FX(x)]j[1 − FX(x)]n−j,

the corresponding probability density function is

fX(r)(x) =
n!

(r − 1)!(n − r)! fX(x)[FX(x)]r−1[1 − FX(x)]n−r.
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Functions of random variables

Special cases of X(1) and X(n):

FX(n)(x) = P(max{X1, . . . ,Xn } ≤ x) = [FX(x)]n,

FX(1)(x) = P(min{X1, . . . ,Xn } ≤ x) = 1 − [1 − FX(x)]n.

Remark:

For continuous random variable, taking derivatives to obtain the probability density
function.
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Problem Set

Problem 1: Show that the probability density function of normal distribution N(µ, σ2)
integrates to 1.
(Hint: consider two normal random variables X,Y)

Problem 2: Prove that for X with density function fX(x), the density function of
y = X2 is

fY(y) =
1

2√y(fX(−
√y) + fX(

√y)), y ≥ 0.

(Hint: start by considering the CDF)
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Problem Set

Problem 3: Suppose X1, · · · ,Xn are i.i.d. sample following Uniform[0, 1] distribution,
find the joint probability density function of (X(1),X(n)).
(Hint: start by considering the CDF)
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