Statistical Sciences

DoSS Summer Bootcamp Probability Module 5

Ichiro Hashimoto
University of Toronto
July 19, 2023

Recap

Learnt in last module:

- Joint and marginal distributions
\triangleright Joint cumulative distribution function
\triangleright Independence of continuous random variables
- Functions of random variables
\triangleright Convolutions
\triangleright Change of variables
\triangleright Order statistics

Outline

- Moments
\triangleright Expectation, Raw moments, central moments
\triangleright Moment-generating functions
- Change-of-variables using MGF
\triangleright Gamma distribution
\triangleright Chi square distribution
- Conditional expectation
\triangleright Law of total expectation
\triangleright Law of total variance

Moments

Intuition: How do the random variables behave on average?

Moments

Intuition: How do the random variables behave on average?

Expectation

Consider a random vector X and function $g(\cdot)$, the expectation of $g(X)$ is defined by $\mathbb{E}(g(X))$, where

- Discrete random vector

$$
\mathbb{E}(g(X))=\sum_{x} g(x) p_{X}(x)
$$

- Continuous random vector

$$
\mathbb{E}(g(X))=\int_{-\infty}^{\infty} g(x) d F(x)=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

Moments

Examples (random variable)

- $X \sim \operatorname{Bernoulli}(p): \mathbb{E}(X)=p \cdot 1+(1-p) \cdot 0=p$.
- $X \sim \mathcal{N}(0,1)$:

$$
\mathbb{E}(X)=\int_{-\infty}^{\infty} x \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x=0
$$

Moments

Examples (random variable)

- $X \sim \operatorname{Bernoulli}(p): \mathbb{E}(X)=p \cdot 1+(1-p) \cdot 0=p$.
- $X \sim \mathcal{N}(0,1)$:

$$
\mathbb{E}(X)=\int_{-\infty}^{\infty} x \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x=0
$$

Examples (random vector)

- $X_{i} \sim \operatorname{Bernoulli}\left(p_{i}\right), i=1,2$:

$$
\mathbb{E}\left(\left(X_{1}, X_{2}^{2}\right)^{\top}\right)=\left(\left(\mathbb{E}\left(X_{1}\right), \mathbb{E}\left(X_{2}^{2}\right)\right)^{\top}\right)=\left(p_{1}, p_{2}\right)^{\top}
$$

Moments

Properties:

- $\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$;
- $\mathbb{E}(a X+b)=a \mathbb{E}(X)+b ;$
- $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$, when X, Y are independent.

Proof of the first property:

Moments

Raw moments

Consider a random vector X, the k-th (raw) moment of X is defined by $\mathbb{E}\left(X^{k}\right)$, where

- Discrete random vector

$$
\mathbb{E}\left(X^{k}\right)=\sum_{x} x^{k} p_{X}(x)
$$

- Continuous random vector

$$
\mathbb{E}\left(X^{k}\right)=\int_{-\infty}^{\infty} x^{k} d F(x)=\int_{-\infty}^{\infty} x^{k} f_{X}(x) d x
$$

Remark:

Moments

Central moments

Consider a random vector X, the k-th central moment of X is defined by $\mathbb{E}\left((X-\mathbb{E}(X))^{k}\right)$.

Remark:

- The first central moment is 0
- Variance is defined as the second central moment.

Variance

The variance of a random variable X is defined as

$$
\operatorname{Var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}
$$

Moments

Another look at the moments:

Moment generating function (1-dimensional)
For a random variable X, the moment generating function (MGF) is defined as

$$
M_{X}(t)=\mathbb{E}\left[e^{t X}\right]=1+t \mathbb{E}(X)+\frac{t^{2} \mathbb{E}\left(X^{2}\right)}{2!}+\frac{t^{3} \mathbb{E}\left(X^{3}\right)}{3!}+\cdots+\frac{t^{n} \mathbb{E}\left(X^{n}\right)}{n!}+\cdots
$$

Moments

Another look at the moments:

Moment generating function (1-dimensional)

For a random variable X, the moment generating function (MGF) is defined as

$$
M_{X}(t)=\mathbb{E}\left[e^{t X}\right]=1+t \mathbb{E}(X)+\frac{t^{2} \mathbb{E}\left(X^{2}\right)}{2!}+\frac{t^{3} \mathbb{E}\left(X^{3}\right)}{3!}+\cdots+\frac{t^{n} \mathbb{E}\left(X^{n}\right)}{n!}+\cdots
$$

Compute moments based on MGF:

Moments from MGF

$$
\mathbb{E}\left(X^{k}\right)=\left.\frac{d^{k}}{d t^{k}} M_{X}(t)\right|_{t=0}
$$

Moments

Relationship between MGF and probability distribution:
MGF uniquely defines the distribution of a random variable.

Moments

Relationship between MGF and probability distribution:
MGF uniquely defines the distribution of a random variable.

Example:

- $X \sim \operatorname{Bernoulli}(p)$

$$
M_{X}(t)=\mathbb{E}\left(e^{t X}\right)=e^{0} \cdot(1-p)+e^{t} \cdot p=p e^{t}+1-p
$$

- Conversely, if we know that

$$
M_{Y}(t)=\frac{1}{3} e^{t}+\frac{2}{3},
$$

it shows $Y \sim \operatorname{Bernoulli}\left(p=\frac{1}{3}\right)$.

Change-of-variables using MGF

Intuition: To get the distribution of a transformed random variable, it suffices to find its MGF first.

Properties:

- $Y=a X+b, M_{Y}(t)=\mathbb{E}\left(e^{t(a X+b)}\right)=e^{t b} M_{X}(a t)$.
- X_{1}, \cdots, X_{n} independent, $Y=\sum_{i=1}^{n} X_{i}$, then $M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)$.

Change-of-variables using MGF

Intuition: To get the distribution of a transformed random variable, it suffices to find its MGF first.

Properties:

- $Y=a X+b, M_{Y}(t)=\mathbb{E}\left(e^{t(a X+b)}\right)=e^{t b} M_{X}(a t)$.
- X_{1}, \cdots, X_{n} independent, $Y=\sum_{i=1}^{n} X_{i}$, then $M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)$.

Remark:

MGF is a useful tool to find the distribution of some transformed random variables, especially when

- The original random variable follows some special distribution, so that we already know / can compute the MGF.
- The transformation on the original variables is linear, say $\sum_{i} a_{i} X_{i}$.

Change-of-variables using MGF

Example: Gamma distribution

$X \sim \Gamma(\alpha, \beta)$,

$$
f(x ; \alpha, \beta)=\frac{x^{\alpha-1} e^{-\beta x} \beta^{\alpha}}{\Gamma(\alpha)} \quad \text { for } x>0 \quad \alpha, \beta>0 .
$$

Compute the MGF of $X \sim \Gamma(\alpha, \beta)$ (details omitted),

$$
M_{X}(t)=\left(1-\frac{t}{\beta}\right)^{-\alpha} \text { for } t<\beta, \text { does not exist for } t \geq \beta
$$

Change-of-variables using MGF

Example: Gamma distribution

Observation:
The two parameters α, β play different roles in variable transformation.

- Summation:

If $X_{i} \sim \Gamma\left(\alpha_{i}, \beta\right)$, and X_{i}^{\prime} 's are independent, then $T=\sum_{i} X_{i} \sim \Gamma\left(\sum_{i} \alpha_{i}, \beta\right)$. If $X_{i} \sim \operatorname{Exp}(\lambda)$ (this is equivalently $\Gamma\left(\left(\alpha_{i}=1, \beta=\lambda\right)\right)$ distribution), and X_{i} 's are independent, then $T=\sum_{i} X_{i} \sim \Gamma(n, \lambda)$.

- Scaling:

If $X \sim \Gamma(\alpha, \beta)$, then $Y=c X \sim \Gamma\left(\alpha, \frac{\beta}{c}\right)$.

Change-of-variables using MGF

Example: χ^{2} distribution

χ^{2} distribution

If $X \sim \mathcal{N}(0,1)$, then X^{2} follows a $\chi^{2}(1)$ distribution.

Find the distribution of $\chi^{2}(1)$ distribution

- From PDF: (Module 4, Problem 2)

For X with density function $f_{X}(x)$, the density function of $Y=X^{2}$ is

$$
f_{Y}(y)=\frac{1}{2 \sqrt{y}}\left(f_{X}(-\sqrt{y})+f_{X}(\sqrt{y})\right), \quad y \geq 0
$$

this gives

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} y^{-\frac{1}{2}} \exp \left(-\frac{y}{2}\right)
$$

Change-of-variables using MGF

Find the distribution of $\chi^{2}(1)$ distribution (continued)

- From MGF:

$$
\begin{aligned}
M_{Y}(t) & =\mathbb{E}\left(e^{t X^{2}}\right)=\int_{-\infty}^{\infty} \exp \left(t x^{2}\right) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2(1-2 t)^{-1}}\right) d x \\
& =(1-2 t)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mathcal{N}\left(0,(1-2 t)^{-1}\right) d x, \quad t<\frac{1}{2} \\
& =(1-2 t)^{-\frac{1}{2}}, \quad t<\frac{1}{2}
\end{aligned}
$$

By observation, $\chi^{2}(1)=\Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$.

Change-of-variables using MGF

Generalize to the $\chi^{2}(d)$ distribution

$\chi^{2}(d)$ distribution

If $X_{i}, i=1, \cdots, d$ are i.i.d $\mathcal{N}(0,1)$ random variables, then $\sum_{i=1}^{d} X_{i}^{2} \sim \chi^{2}(d)$.

By properties of MGF, $\chi^{2}(d)=\Gamma\left(\frac{d}{2}, \frac{1}{2}\right)$, and this gives the PDF of $\chi^{2}(d)$ distribution

$$
\frac{x^{\frac{d}{2}-1} e^{-\frac{x}{2}}}{2^{\frac{d}{2}} \Gamma\left(\frac{d}{2}\right)} \text { for } x>0
$$

Conditional expectation

From expectation to conditional expectation:
How will the expectation change after conditioning on some information?

Conditional expectation

From expectation to conditional expectation:
How will the expectation change after conditioning on some information?

Conditional expectation

If X and Y are both discrete random vectors, then for function $g(\cdot)$,

- Discrete:

$$
\mathbb{E}(g(X) \mid Y=y)=\sum_{x} g(x) p_{X \mid Y=y}(x)=\sum_{x} g(x) \frac{P(X=x, Y=y)}{P(Y=y)}
$$

- Continuous:

$$
\mathbb{E}(g(X) \mid Y=y)=\int_{-\infty}^{\infty} g(x) f_{X \mid Y}(x \mid y) \mathrm{d} x=\frac{1}{f_{Y}(y)} \int_{-\infty}^{\infty} g(x) f_{X, Y}(x, y) \mathrm{d} x
$$

Conditional expectation

Properties:

- If X and Y are independent, then

$$
\mathbb{E}(X \mid Y=y)=\mathbb{E}(X)
$$

- If X is a function of Y, denote $X=g(Y)$, then

$$
\mathbb{E}(X \mid Y=y)=g(y)
$$

Sketch of proof:

Conditional expectation

Remark:

By changing the value of $Y=y, \mathbb{E}(X \mid Y=y)$ also changes, and $\mathbb{E}(X \mid Y)$ is a random variable (the randomness comes from Y).

Conditional expectation

Remark:
By changing the value of $Y=y, \mathbb{E}(X \mid Y=y)$ also changes, and $\mathbb{E}(X \mid Y)$ is a random variable (the randomness comes from Y).

Total expectation and conditional expectation
Law of total expectation

$$
\mathbb{E}(\mathbb{E}(X \mid Y))=\mathbb{E}(X)
$$

Proof: (discrete case)

Conditional expectation

Total variance and conditional variance
Conditional variance

$$
\operatorname{Var}(Y \mid X)=\mathbb{E}\left(Y^{2} \mid X\right)-(\mathbb{E}(Y \mid X))^{2}
$$

Conditional expectation

Total variance and conditional variance

Conditional variance

$$
\operatorname{Var}(Y \mid X)=\mathbb{E}\left(Y^{2} \mid X\right)-(\mathbb{E}(Y \mid X))^{2}
$$

Law of total variance

$$
\operatorname{Var}(Y)=\mathbb{E}[\operatorname{Var}(Y \mid X)]+\operatorname{Var}(\mathbb{E}[Y \mid X])
$$

Remark:

Problem Set

Problem 1: Prove that $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$ when X and Y are independent. (Hint: simply consider the continuous case, use the independent property of the joint pdf)

Problem 2: For $X \sim \operatorname{Uniform}(a, b)$, compute $\mathbb{E}(X)$ and $\operatorname{Var}(X)$.
Problem 3: Determine the MGF of $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
(Hint: Start by considering the MGF of $Z \sim \mathcal{N}(0,1)$, and then use the transformation $X=\mu+\sigma Z$)

Problem Set

Problem 4: The citizens of Remuera withdraw money from a cash machine according to $X=50,100,200$ with probability $0.3,0.5,0.2$, respectively. The number of customers per day has the distribution $N \sim \operatorname{Poisson}(\lambda=10)$. Let
$T_{N}=X_{1}+X 2+\cdots+X_{N}$ be the total amount of money withdrawn in a day, where each X_{i} has the probability above, and X_{i} 's are independent of each other and of N.

- Find $\mathbb{E}\left(T_{N}\right)$,
- Find $\operatorname{Var}\left(T_{N}\right)$.

