Statistical Sciences

DoSS Summer Bootcamp Probability Module 5

Ichiro Hashimoto
University of Toronto
July 19, 2023

Recap

Learnt in last module:

- Joint and marginal distributions
\triangleright Joint cumulative distribution function
\triangleright Independence of continuous random variables
- Functions of random variables
\triangleright Convolutions
\triangleright Change of variables
\triangleright Order statistics

Outline

- Moments
\triangleright Expectation, Raw moments, central moments
\triangleright Moment-generating functions
- Change-of-variables using MGF
\triangleright Gamma distribution
\triangleright Chi square distribution
- Conditional expectation
\triangleright Law of total expectation
\triangleright Law of total variance

Moments

Intuition: How do the random variables behave on average?

Moments

Intuition: How do the random variables behave on average?

Expectation

Consider a random vector X and function $g(\cdot)$, the expectation of $g(X)$ is defined by $\mathbb{E}(g(X))$, where

- Discrete random vector
e-g. $\quad g(x)=x_{1}+\cdots+x_{n}$

$$
\mathbb{E}(g(X))=\sum_{x=\left(x_{1}, \cdots, x_{d .}\right)} g(x) p_{X}(x), \quad \text { whar } x=\left(x_{1}, \cdots, x_{n}\right)^{\top}
$$

- Continuous random vector

$$
\mathbb{E}(g(X))=\int_{0} g(x) d F(x)=\int_{x} g(x) f_{X}(x) d x
$$

Recall the duff of EX rs

$$
E X=\lim _{n \rightarrow \infty} \sum_{k=-\infty}^{\infty} \frac{k}{n} \mathbb{P}\left(X \in\left(\frac{k}{n}, \frac{\left.k_{1}\right)}{n}\right]\right)
$$

We must han x he a random narrate to make this definition valued. i.e. $\quad X^{-1}(B) \in T$ for $\begin{gathered}\text { on Moral int } B \in R \text { : }\end{gathered}$

To counter $E g(x)$ valid, we need $g(x)$ to be a random variole. i.e. $\{g(x)\}^{-1}(B) \in \hbar$ for ar Bowl at $B \in \mathbb{R}$.

We can also write $\{g(x)\}^{-1}(B)=X^{-1}\left(\mathcal{L}^{-1}(B)\right) \in \neq \hbar$

$$
\left[x^{-1}\left(g^{-1}(p)\right) \xrightarrow{x} g^{-1}(B) \xrightarrow{g} B\right]
$$

Now, note thy X is a random vector. Therefore, if $g^{-1}(B) \in \mathbb{R}^{d}$ for cay, $\beta \in R$, then $X^{-1}\left(g^{-1}(\beta)\right) \in F$ is ensured.

Def (measurable map/fuction)
$A \operatorname{map}$ (fuctia) $f:(D, F) \rightarrow(I, \widetilde{\bar{p}})$ is measurable if $f^{-1}(A) \in \bar{\phi}$ for an $A \in \widehat{\bar{p}}$.

Cor If $g:\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \rightarrow(\mathbb{R}, \mathbb{R})$ is measwahte, and $X=(\Omega, \mp) \rightarrow\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is a random rector, then $g(x)$ is a random variable.
\longrightarrow We can define $E g(x)$

Prohlem What type of fation $g:\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \rightarrow(\mathbb{R}, \mathbb{R})$ is measurable?
(1.) Indicator fuction $\underbrace{\underline{L}[x \in A] \text { for } A \in \mathbb{R}^{d} \text {. is measurable. }}_{L= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases} }$
(Proaf)

$$
\underline{\Lambda}[x \in A]^{-1}(B)= \begin{cases}\phi & \text { if } 0 \& B, 1 \& B \\ A & \text { if } 1 \in B, \quad O \& B \\ A^{c} & \text { if } 0 \in B, \quad 1 \& B \\ \mathbb{R}^{d} & \text { othouise. }\end{cases}
$$

$\phi, \mathbb{R}^{d} \in \mathbb{R}^{d}$ trivially holds:
$A \in R^{d}$ hy cssuption.
$A^{c} \in \mathbb{R}^{d}$ sinn \mathbb{R}^{d} is a σ-algebra.
Therufor, $\left\{\mathbb{E}[x \in A]^{-1}(B) \in \mathbb{R}^{d}\right.$ halds almys.
2) Simple fuotin $g(x)=\sum_{n=1}^{n} d_{r} \mathbb{1}\left[x \in A_{h}\right], A_{\Omega} \in R^{d}$

Siuple fuctions are measurchle.

3) limit of siupte fuctins are mecsarchle.
\rightarrow This includes all continvons fuctions and piecewise continums fuctions.
\rightarrow Indead almost ay fuations we wase are messmable.

However, we can show the existone of non-measurchle fuction.

Moments

Examples (random variable)

- $X \sim \operatorname{Bernoulli}(p): \mathbb{E}(X)=p \cdot 1+(1-p) \cdot 0=p$.
- $X \sim \mathcal{N}(0,1)$:

$$
\mathbb{E}(X)=\int_{-\infty}^{\infty} \underbrace{x \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)}_{\text {odd fuotion }} d x=0
$$

Moments

Examples (random variable)

- $X \sim \operatorname{Bernoulli}(p): \mathbb{E}(X)=p \cdot 1+(1-p) \cdot 0=p$.
- $X \sim \mathcal{N}(0,1)$:

$$
\mathbb{E}(X)=\int_{-\infty}^{\infty} x \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x=0
$$

Examples (random vector)

- $X_{i} \sim \operatorname{Bernoulli}\left(p_{i}\right), i=1,2$:

$$
\mathbb{E}\left(\left(X_{1}, X_{2}^{\mathrm{R}}\right)^{\top}\right)=\left(\left(\mathbb{E}\left(X_{1}\right), \mathbb{E}\left(X_{2}^{\mathrm{R}}\right)\right)^{\top}\right)=\left(p_{1}, p_{2}\right)^{\top}
$$

Moments
Properties:

- $\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$;
- $\mathbb{E}(a X+b)=a \mathbb{E}(X)+b$;
E is 1 neon.
- $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$, when X, Y are independent.

Proof of the first property:

If dis cunte,

$$
\begin{aligned}
E(x+y) & =\sum_{r_{2}=-\infty}^{\infty} \underbrace{\mathbb{P}(x+1=\mu)}_{\downarrow \text { decappo. }} \\
& =\sum_{h_{2}=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} k \underline{\mathbb{P}(x=j, \quad \zeta=k-j)}
\end{aligned}
$$

Lut $l=k-j \Leftrightarrow r=l+j$

$$
\begin{aligned}
& =\sum_{l=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} \xrightarrow[l]{\infty}(\ell+1) \mathbb{P}\left(x=1, Y_{2} \ell .\right) \\
& =\sum_{j=-\infty}^{\infty} j \sum_{l_{l=-\infty}^{\infty}}^{\infty} \mathbb{P}(x=j, y=l)+\sum_{l=-\infty}^{\infty} \ell \sum_{j=-\infty}^{\infty} \mathbb{P}\left(x=j, Y_{2} l\right) \\
& =\mathbb{P}(x=j)
\end{aligned}
$$

$$
=\sum_{j=-\infty}^{\infty} j \mathbb{P}\left(x_{2} \tau\right)+\sum_{k=-\infty}^{\infty} l\left(P\left(Y_{2} l\right)\right.
$$

$$
=E X+E Y \text {. }
$$

Q：How to prow this in genera？

$$
E(x+1)=\lim _{n \rightarrow \infty} \sum_{n=\infty}^{\infty} \frac{k}{n} \mathbb{P}\left(X+Y \in\left(\frac{k}{n}, \frac{k+1}{n}\right]\right)
$$

Con we decompose this probahil少 in a similar anannor？
\longrightarrow Wa need quite sophisticut－1 mathenadreal arguments． to show even such a basie property

Moments

Raw moments

Consider a random vector X, the k-th (raw) moment of X is defined by $\mathbb{E}\left(X^{k}\right)$, where

- Discrete random vector

$$
\mathbb{E}\left(X^{k}\right)=\sum_{x} x^{k} p_{X}(x)
$$

- Continuous random vector

$$
\mathbb{E}\left(X^{k}\right)=\int_{-\infty}^{\infty} x^{k} d F(x)=\int_{-\infty}^{\infty} x^{k} f_{X}(x) d x
$$

Remark:

Moments

Central moments

Consider a random vector X, the k-th central moment of X is defined by $\mathbb{E}\left((X-\mathbb{E}(X))^{k}\right)$.

Remark:

$$
\text { instal of } X \text {, use } X-E X
$$

- The first central moment is 0
- Variance is defined as the second central moment.

Variance

The variance of a random variable X is defined as

$$
\operatorname{Var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}
$$

Moments

Another look at the moments:
Moment generating function (1-dimensional)
For a random variable X, the moment generating function (MGF) is defined as

$$
\begin{aligned}
& M_{X}(t)=\mathbb{E}\left[e^{t X}\right]=1+t \mathbb{E}(X)+\frac{t^{2} \mathbb{E}\left(X^{2}\right)}{2!}+\frac{t^{3} \mathbb{E}\left(X^{3}\right)}{3!}+\cdots+\frac{t^{n} \mathbb{E}\left(X^{n}\right)}{n!}+\cdots \\
& t \in \mathbb{R} \\
& \text { 刀 } \\
& \rightarrow \rightarrow \\
& \text { raw moments }
\end{aligned}
$$

Moments

Another look at the moments:

Moment generating function (1-dimensional)

For a random variable X, the moment generating function (MGF) is defined as

$$
M_{X}(t)=\mathbb{E}\left[e^{t X}\right]=1+t \mathbb{E}(X)+\frac{t^{2} \mathbb{E}\left(X^{2}\right)}{2!}+\frac{t^{3} \mathbb{E}\left(X^{3}\right)}{3!}+\cdots+\frac{t^{n} \mathbb{E}\left(X^{n}\right)}{n!}+\cdots
$$

Compute moments based on MGF:

Moments from MGF

$$
\mathbb{E}\left(X^{k}\right)=\left.\frac{d^{k}}{d t^{k}} M_{X}(t)\right|_{t=0}
$$

Moments

Relationship between MGF and probability distribution:
MGF uniquely defines the distribution of a random variable.

If $\mu_{x}(t)=M_{y}(t)$ on an open interval near 0 ,
then $X=Y^{Y}$.
"X and Y have the same distribution"

Proof relies on Fourier Analysis
\rightarrow Billingsky "Probability""

Moments

Relationship between MGF and probability distribution:
MGF uniquely defines the distribution of a random variable.

Example:

- $X \sim \operatorname{Bernoulli}(p)$

$$
M_{X}(t)=\mathbb{E}\left(e^{t X}\right)=e^{0} \cdot(1-p)+e^{t} \cdot p=p e^{t}+1-p
$$

- Conversely, if we know that

$$
\begin{aligned}
& M_{Y}(t)=\frac{1}{3} e^{t}+\frac{2}{3}, \quad \begin{array}{r}
\text { Compony these } \\
p=\frac{1}{3}
\end{array}
\end{aligned}
$$

it shows $Y \sim \operatorname{Bernoulli}\left(p=\frac{1}{3}\right)$.
by uniqueness of MGF.

Change-of-variables using MGF

Intuition: To get the distribution of a transformed random variable, it suffices to find its MGF first.

Properties:

$$
E e^{t-1} \quad E e^{t b} \cdot e^{t a x}=e^{t b} E e^{t^{t a x}}=e^{t b} M_{x}\left(t_{a}\right)
$$

- $Y=a X+b, M_{Y}(t) \xlongequal{\mathbb{E}}\left(e^{t(a X+b)}\right)=e^{t b} M_{X}(a t)$.
- X_{1}, \cdots, X_{n} independent, $Y=\sum_{i=1}^{n} X_{i}$, then $M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)$.

$$
\begin{gathered}
M_{i}(t)=E \exp (t i)=E \exp \left(t \sum_{i} x_{c}\right)=\text { 平 } \prod_{i=1}^{n} \exp \left(t x_{c}\right) \\
h_{1} \text { rudeperath } \Theta \prod_{i=1} E \exp \left(t x_{c}\right)=\prod_{i=1}^{n} M_{x_{i}}(t)
\end{gathered}
$$

Change-of-variables using MGF

Intuition: To get the distribution of a transformed random variable, it suffices to find its MGF first.

Properties:

- $Y=a X+b, M_{Y}(t)=\mathbb{E}\left(e^{t(a X+b)}\right)=e^{t b} M_{X}(a t)$.
- X_{1}, \cdots, X_{n} independent, $Y=\sum_{i=1}^{n} X_{i}$, then $M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)$.

Remark:

MGF is a useful tool to find the distribution of some transformed random variables, especially when

- The original random variable follows some special distribution, so that we already know / can compute the MGF.
- The transformation on the original variables is linear, say $\sum_{i} a_{i} X_{i}$.

Change-of-variables using MGF

Example: Gamma distribution

$X \sim \Gamma(\alpha, \beta)$,

$$
f(x ; \alpha, \beta)=\frac{x^{\alpha-1} e^{-\beta x} \beta^{\alpha}}{\Gamma(\alpha)} \quad \text { for } x>0 \quad \alpha, \beta>0 .
$$

Compute the MGF of $X \sim \Gamma(\alpha, \beta)$ (details omitted),

$$
M_{X}(t)=\left(1-\frac{t}{\beta}\right)^{-\alpha} \text { for } t<\beta, \text { does not exist for } t \geq \beta
$$

Change-of-variables using MGF

Example: Gamma distribution

Observation:
The two parameters α, β play different roles in variable transformation.

- Summation:

If $X_{i} \sim \Gamma\left(\alpha_{i}, \beta\right)$, and X_{i}^{\prime} 's are independent, then $T=\sum_{i} X_{i} \sim \Gamma\left(\sum_{i} \alpha_{i}, \beta\right)$.
If $X_{i} \sim \operatorname{Exp}(\lambda)$ (this is equivalently $\Gamma\left(\left(\alpha_{i}=1, \beta \xlongequal[=]{\wedge}\right)\right)$ distribution), and X_{i}^{\prime} 's are independent, then $T=\sum_{i} X_{i} \sim \Gamma(n, \lambda)$.

- Scaling:

If $X \sim \Gamma(\alpha, \beta)$, then $Y=c X \sim \Gamma\left(\alpha, \frac{\beta}{c}\right)$.

If $X_{i} \sim \rho\left(\alpha_{i}, \beta\right)$ and $X_{i}^{\prime} s$ are indegencont,

$$
M_{x_{i}}(t)=\left(1-\frac{t}{b}\right)^{-\alpha_{i}}
$$

So, for $y=\sum_{i=1}^{n} x_{i}$,

$$
\begin{aligned}
M_{y}(t) & =\prod_{i=1}^{n} M_{x_{i}}(t) \\
& =\prod_{i=1}^{n}\left(1-\frac{t}{\beta}\right)^{-\alpha_{i}} \\
& =\left(1-\frac{t}{b}\right)^{-\sum_{i=1}^{n} \alpha_{i}}
\end{aligned}
$$

By uniznenes of MGF

$$
Y \sim \Gamma\left(\sum_{i} \alpha_{i}, \beta\right)
$$

Change-of-variables using MGF

Example: χ^{2} distribution

χ^{2} distribution

If $X \sim \mathcal{N}(0,1)$, then X^{2} follows a $\chi^{2}(1)$ distribution.

Find the distribution of $\chi^{2}(1)$ distribution

- From PDF: (Module 4, Problem 2)

For X with density function $f_{X}(x)$, the density function of $Y=X^{2}$ is

$$
f_{Y}(y)=\frac{1}{2 \sqrt{y}}\left(f_{X}(-\sqrt{y})+f_{X}(\sqrt{y})\right), \quad y \geq 0
$$

this gives

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} y^{-\frac{1}{2}} \exp \left(-\frac{y}{2}\right) . \quad \rightarrow \quad \zeta \sim \rho^{\prime}\left(\frac{1}{2}, \frac{1}{2}\right)
$$

Change-of-variables using MGF

Find the distribution of $\chi^{2}(1)$ distribution (continued)

- From MGF:

$$
\begin{aligned}
M_{Y}(t) & =\mathbb{E}\left(e^{t X^{2}}\right)=\int_{-\infty}^{\infty} \exp \left(t x^{2}\right) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2(1-2 t)^{-1}}\right) d x \\
& =(1-2 t)^{-\frac{1}{2}} \underbrace{\int_{-\infty}^{\infty} \mathcal{N}\left(0,(1-2 t)^{-1}\right) d x,}_{-\infty} t<\frac{1}{2} \\
& =(1-2 t)^{-\frac{1}{2}}, \quad t<\frac{1}{2} . \quad=1
\end{aligned}
$$

By observation, $\chi^{2}(1)=\Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$.

Change-of-variables using MGF

Generalize to the $\chi^{2}(d)$ distribution

$\chi^{2}(d)$ distribution

If $X_{i}, i=1, \cdots, d$ are i.i.d $\mathcal{N}(0,1)$ random variables, then $\sum_{i=1}^{d} X_{i}^{2} \sim \chi^{2}(d)$.

By properties of MGF, $\chi^{2}(d)=\Gamma\left(\frac{d}{2}, \frac{1}{2}\right)$, and this gives the PDF of $\chi^{2}(d)$ distribution

$$
\frac{x^{\frac{d}{2}-1} e^{-\frac{x}{2}}}{2^{\frac{d}{2}} \Gamma\left(\frac{d}{2}\right)} \text { for } x>0
$$

Conditional expectation

From expectation to conditional expectation:
How will the expectation change after conditioning on some information?

Conditional expectation

From expectation to conditional expectation:
How will the expectation change after conditioning on some information?

Conditional expectation

If X and Y are both discrete random vectors, then for function $g(\cdot)$,

- Discrete:

$$
\mathbb{E}(g(X) \mid Y=y)=\sum_{x} g(x) p_{X \mid Y=y}(x)=\sum_{x} g(x) \frac{P(X=x, Y=y)}{P(Y=y)}
$$

- Continuous:

$$
\mathbb{E}(g(X) \mid Y=y)=\int_{-\infty}^{\infty} g(x) \underbrace{f_{X \mid Y}(x \mid y)} \mathrm{d} x=\underbrace{\frac{1}{f_{Y}(y)}} \int_{-\infty}^{\infty} g(x) \underbrace{f_{X, Y}(x, y)} \mathrm{d} x .
$$

Conditional expectation
Properties:

- If X and Y are independent, then

$$
\mathbb{E}(X \mid Y=y)=\mathbb{E}(X) . \quad \begin{aligned}
& \text { due to }
\end{aligned} \begin{aligned}
& p_{X \mid Y}(x \mid y)=p_{X}(x) \\
& f_{X \mid Y}(x \mid y)=f_{X}(x)
\end{aligned}
$$

- If X is a function of Y, denote $X=g(Y)$, then

$$
\mathbb{E}(X \mid Y=y)=g(y)
$$

Sketch of proof:

Conditional expectation
Remark:
By changing the value of $Y=y, \mathbb{E}(X \mid Y=y)$ also changes, and $\mathbb{E}(X \mid Y)$ is a random variable (the randomness comes from Y).
$E(X I Y)$ can ha treated as a function of Y
There is no randomness from X any more.

Conditional expectation

Remark:

By changing the value of $Y=y, \mathbb{E}(X \mid Y=y)$ also changes, and $\mathbb{E}(X \mid Y)$ is a random variable (the randomness comes from Y).

Total expectation and conditional expectation
Law of total expectation

$$
\mathbb{E}(\mathbb{E}(X \mid Y))=\mathbb{E}(X)
$$

Proof: (discrete case)

$$
L H S=E\left[\sum_{x} x \cdot \frac{\mathbb{P}(x=x, y=z)}{\mathbb{P}(y=y)}\right]
$$

$$
=\sum_{k} x \underbrace{\sum_{z} \mathbb{P}\left(x=x, y_{2} z\right)}_{=P(x=x)}=\sum_{x} x \mathbb{P}(x=1)=E X
$$

(Continums case.)

$$
\begin{aligned}
& E(E(x \mid y))=k\left[\int_{-\infty}^{\infty} x f_{x, y}(x, y) d x / f x(z)\right] \\
&\left.=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} x f_{x, y}(x, y) d x / f_{y} / z\right)\right] f(z) d z \\
&=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{x, y}(x, z) d x d y \\
&=\int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f_{x, y}(x, y) d z d x \\
&=\int_{-\infty}^{\infty}=f_{x}(x) \\
& x f_{x}(x) d x=E x
\end{aligned}
$$

Conditional expectation

Total variance and conditional variance
Conditional variance

$$
\operatorname{Var}(Y \mid X)=\mathbb{E}\left(Y^{2} \mid X\right)-(\mathbb{E}(Y \mid X))^{2}
$$

Conditional expectation

Total variance and conditional variance

Conditional variance

$$
\operatorname{Var}(Y \mid X)=\mathbb{E}\left(Y^{2} \mid X\right)-(\mathbb{E}(Y \mid X))^{2}
$$

Law of total variance

$$
\operatorname{Var}(Y)=\mathbb{E}[\operatorname{Var}(Y \mid X)]+\operatorname{Var}(\mathbb{E}[Y \mid X])
$$

Remark:

$$
\begin{aligned}
& \text { is randan } \\
& \text { w.r.t. } X
\end{aligned}
$$

$$
\uparrow \text { is randan w.v.t. } X
$$

Problem Set

Problem 1: Prove that $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$ when X and Y are independent. (Hint: simply consider the continuous case, use the independent property of the joint pdf)

Problem 2: For $X \sim \operatorname{Uniform}(a, b)$, compute $\mathbb{E}(X)$ and $\operatorname{Var}(X)$.
Problem 3: Determine the MGF of $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
(Hint: Start by considering the MGF of $Z \sim \mathcal{N}(0,1)$, and then use the transformation $X=\mu+\sigma Z$)

Problem Set

Problem 4: The citizens of Remuera withdraw money from a cash machine according to $X=50,100,200$ with probability $0.3,0.5,0.2$, respectively. The number of customers per day has the distribution $N \sim \operatorname{Poisson}(\lambda=10)$. Let
$T_{N}=X_{1}+X 2+\cdots+X_{N}$ be the total amount of money withdrawn in a day, where each X_{i} has the probability above, and X_{i} 's are independent of each other and of N.

- Find $\mathbb{E}\left(T_{N}\right)$,
- Find $\operatorname{Var}\left(T_{N}\right)$.

