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Recap

Learnt in last module:

• Joint and marginal distributions
! Joint cumulative distribution function
! Independence of continuous random variables

• Functions of random variables
! Convolutions
! Change of variables
! Order statistics
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Outline

• Moments
! Expectation, Raw moments, central moments
! Moment-generating functions

• Change-of-variables using MGF
! Gamma distribution
! Chi square distribution

• Conditional expectation
! Law of total expectation
! Law of total variance
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Moments

Intuition: How do the random variables behave on average?

Expectation
Consider a random vector X and function g(·), the expectation of g(X) is defined by
E(g(X)), where

• Discrete random vector
E(g(X)) =

∑

x
g(x)pX(x),

• Continuous random vector

E(g(X)) =
∫ ∞

−∞
g(x) dF(x) =

∫ ∞

−∞
g(x)fX(x) dx.
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Recall the define of EX is

EX=E(XE(E,].)
We musthave Xhe a random variable to make this definition valid.

i.e. x
-

(B) GF for any Boral set BER.

To make E9(X) valid, we need g(x) to be a
wandem variable.

i.e. 481415(B) ccfor an Bowl atBER.

we can also write (91x3"(B) =X-(C(B).) eF

(x(e-)*,8,B]
Now, note that X is a random vector. Therefore,

if (B) GRY for can, BER,then

x
+(2-(i)GGis ensured.

feet. (measurable map/fuctial

A map (faction) f:(_,5) -> (I,I) is measurable

if fTCA) = 4 for any AC F.

or If 8:(RRY, R2)+ (R, R) is measurable, and

X =(x,F) -(R4, Rd) is a random rector,

then 9(X) is a random variable.

-> We can define E9(X)



When What type of faction 9:(14,14) - (1R, R)

is measurable?

1)Indicator Suction #A] for A GRY is measurable.

I if XEA
4 =E

0 if x*A

4 if0 &B, IAB
<Proof) A[xxA)(B) = S A if IEB, OAB

As if OGB, IAB

IRd otherwise.

4, IRY GRP trivially holds:

AtRd by assumption

AE Rd since Rd is a calgebra.

Therefor, A[x=A)"(B) G R4 holds always.

2) Simple. Suctio q(x) =5x * [xEAr], ArR

simple factions are measurable.

**
A, AC



3)limit of simple factions are measurable.

-> this includes all continuous factions and

piecewise continuous fuctions.

-> Indeed almost any factions we use are measurable.

However, we can show the existent ofnon-measurable

#M



Moments

Examples (random variable)
• X ∼ Bernoulli(p): E(X) = p · 1 + (1 − p) · 0 = p.
• X ∼ N (0, 1):

E(X) =
∫ ∞

−∞
x 1√

2π
exp(−x2

2 ) dx = 0.

Examples (random vector)
• Xi ∼ Bernoulli(pi), i = 1, 2:

E
(
(X1,X2

2)
#
)
=

(
(E(X1),E(X2

2))
#
)
= (p1, p2)

#.
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Moments
Properties:

• E(X + Y) = E(X) + E(Y);
• E(aX + b) = aE(X) + b;
• E(XY) = E(X)E(Y), when X,Y are independent.

Proof of the first property:
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If discrito,

-
↓ decompose.

E(XTY):

Ertextin=I
hz-x jz- is
-

-EEs ceeil p(xi, ye e.)-

-
↳

=E;E (P(x, ye) +2& 21(X-5,xze)
j= - c 12 -s- ex-

=IP(X=5) =IP (Y=l)

:j(xi) + EseN(Yre)

I Ex +

E
-



&:How to
prom this in general?

ECx+T): ,3)
Sow we decompose this probability
in a similar manner?

-> We need quite sophisticatal mathematical arguments.

to show even such a basic property.



Moments

Raw moments
Consider a random vector X, the k-th (raw) moment of X is defined by E(Xk), where

• Discrete random vector
E(Xk) =

∑

x
xkpX(x),

• Continuous random vector

E(Xk) =
∫ ∞

−∞
xk dF(x) =

∫ ∞

−∞
xkfX(x) dx.

Remark:
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Moments

Central moments
Consider a random vector X, the k-th central moment of X is defined by
E((X − E(X))k).

Remark:
• The first central moment is 0
• Variance is defined as the second central moment.

Variance
The variance of a random variable X is defined as

Var(X) = E((X − E(X))2) = E(X2)− (E(X))2.

July 19, 2023 8 / 1

-

Ex



Moments

Another look at the moments:
Moment generating function (1-dimensional)
For a random variable X, the moment generating function (MGF) is defined as

MX(t) = E
[
etX

]
= 1 + tE(X) + t2E(X2)

2! +
t3E(X3)

3! + · · ·+ tnE(Xn)
n! + · · ·

Compute moments based on MGF:

Moments from MGF

E(Xk) =
dk

dtk MX(t)|t=0.
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Moments

Relationship between MGF and probability distribution:
MGF uniquely defines the distribution of a random variable.

Example:
• X ∼ Bernoulli(p)

MX(t) = E(etX) = e0 · (1 − p) + et · p = pet + 1 − p.

• Conversely, if we know that

MY(t) =
1
3et +

2
3 ,

it shows Y ∼ Bernoulli(p = 1
3).
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Change-of-variables using MGF

Intuition: To get the distribution of a transformed random variable, it suffices to find
its MGF first.
Properties:

• Y = aX + b, MY(t) = E(et(aX+b)) = etbMX(at).
• X1, · · · ,Xn independent, Y =

∑n
i=1 Xi, then MY(t) =

∏n
i=1 MXi(t).

Remark:
MGF is a useful tool to find the distribution of some transformed random variables,
especially when

• The original random variable follows some special distribution, so that we already
know / can compute the MGF.

• The transformation on the original variables is linear, say ∑
i aiXi.
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Change-of-variables using MGF

Example: Gamma distribution

X ∼ Γ(α,β),
f(x;α,β) = xα−1e−βxβα

Γ(α)
for x > 0 α,β > 0.

Compute the MGF of X ∼ Γ(α,β) (details omitted),

MX(t) =
(

1 − t
β

)−α

for t < β, does not exist for t ≥ β.
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Change-of-variables using MGF

Example: Gamma distribution

Observation:
The two parameters α,β play different roles in variable transformation.

• Summation:
If Xi ∼ Γ(αi,β), and Xi’s are independent, then T =

∑
i Xi ∼ Γ(

∑
i αi,β).

If Xi ∼ Exp(λ) (this is equivalently Γ((αi = 1,β = λ)) distribution), and Xi’s are
independent, then T =

∑
i Xi ∼ Γ(n,λ).

• Scaling:
If X ∼ Γ(α,β), then Y = cX ∼ Γ(α, βc ).
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If XimP(hi, B) and Xis are independent,

MyrCH:(1- 55-di

So, for 4 =E, Xi,

My(H =E,MxiCH

-I (1-2)
- 4

-22:
= (1-5)

By uniqueness of MGF
->

-Edi



Change-of-variables using MGF
Example: χ2 distribution

χ2 distribution
If X ∼ N (0, 1), then X2 follows a χ2(1) distribution.

Find the distribution of χ2(1) distribution
• From PDF: (Module 4, Problem 2)

For X with density function fX(x), the density function of Y = X2 is

fY(y) =
1

2√y(fX(−
√y) + fX(

√y)), y ≥ 0,

this gives
fY(y) =

1√
2π

y− 1
2 exp(−y

2).

July 19, 2023 14 / 1

-

4-ME,z)
-

mean



Change-of-variables using MGF

Find the distribution of χ2(1) distribution (continued)

• From MGF:

MY(t) = E(etX2
) =

∫ ∞

−∞
exp(tx2)

1√
2π

exp(−x2

2 ) dx

=

∫ ∞

−∞

1√
2π

exp
(
− x2

2(1 − 2t)−1

)
dx

= (1 − 2t)− 1
2

∫ ∞

−∞
N (0, (1 − 2t)−1) dx, t < 1

2

= (1 − 2t)− 1
2 , t < 1

2 .

By observation, χ2(1) = Γ(1
2 ,

1
2).
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Change-of-variables using MGF

Generalize to the χ2(d) distribution

χ2(d) distribution
If Xi, i = 1, · · · , d are i.i.d N (0, 1) random variables, then ∑d

i=1 X2
i ∼ χ2(d).

By properties of MGF, χ2(d) = Γ(d
2 ,

1
2), and this gives the PDF of χ2(d) distribution

x d
2−1e− x

2

2 d
2Γ(d

2)
for x > 0.
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Conditional expectation
From expectation to conditional expectation:
How will the expectation change after conditioning on some information?

Conditional expectation
If X and Y are both discrete random vectors, then for function g(·),

• Discrete:

E(g(X) | Y = y) =
∑

x
g(x)pX|Y=y(x) =

∑

x
g(x)P(X = x,Y = y)

P(Y = y)

• Continuous:

E(g(X) | Y = y) =
∫ ∞

−∞
g(x)fX|Y(x|y)dx =

1
fY(y)

∫ ∞

−∞
g(x)fX,Y(x, y)dx.
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Conditional expectation
Properties:

• If X and Y are independent, then

E(X | Y = y) = E(X).
• If X is a function of Y, denote X = g(Y), then

E(X | Y = y) = g(y).

Sketch of proof:
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Conditional expectation
Remark:
By changing the value of Y = y, E(X | Y = y) also changes, and E(X | Y) is a random
variable (the randomness comes from Y).

Total expectation and conditional expectation

Law of total expectation
E(E(X | Y)) = E(X)

Proof: (discrete case)
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Conditional expectation
Total variance and conditional variance
Conditional variance

Var(Y | X) = E(Y2 | X)− (E(Y | X))2 .

Law of total variance
Var(Y) = E[Var(Y | X)] + Var(E[Y | X]).

Remark:
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Problem Set

Problem 1: Prove that E(XY) = E(X)E(Y) when X and Y are independent.
(Hint: simply consider the continuous case, use the independent property of the joint
pdf)
Problem 2: For X ∼ Uniform(a, b), compute E(X) and Var(X).
Problem 3: Determine the MGF of X ∼ N (µ,σ2).
(Hint: Start by considering the MGF of Z ∼ N (0, 1), and then use the transformation
X = µ+ σZ)
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Problem Set

Problem 4: The citizens of Remuera withdraw money from a cash machine according
to X = 50, 100, 200 with probability 0.3, 0.5, 0.2, respectively. The number of
customers per day has the distribution N ∼ Poisson(λ = 10). Let
TN = X1 + X2 + · · ·+ XN be the total amount of money withdrawn in a day, where
each Xi has the probability above, and Xi’s are independent of each other and of N.

• Find E(TN),
• Find Var(TN).
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