Statistical Sciences

DoSS Summer Bootcamp Probability Module 6

Ichiro Hashimoto
University of Toronto

July 20, 2023

Recap

Learnt in last module:

- Moments
\triangleright Expectation, Raw moments, central moments
\triangleright Moment-generating functions
- Change-of-variables using MGF
\triangleright Gamma distribution
\triangleright Chi square distribution
- Conditional expectation
\triangleright Law of total expectation
\triangleright Law of total variance

Outline

- Covariance
\triangleright Covariance as an inner product
\triangleright Correlation
\triangleright Cauchy-Schwarz inequality
\triangleright Uncorrelatedness and Independence
- Concentration
\triangleright Markov's inequality
\triangleright Chebyshev's inequality
\triangleright Chernoff bounds

Covariance

Recall the property of expectation:

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

Covariance

Recall the property of expectation:

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

What about the variance?

$$
\begin{aligned}
\operatorname{Var}(X+Y) & =\mathbb{E}(X+Y-\mathbb{E}(X)-\mathbb{E}(Y))^{2} \\
& =\mathbb{E}(X-\mathbb{E}(X))^{2}+\mathbb{E}(Y-\mathbb{E}(Y))^{2}+2 \mathbb{E}((X-\mathbb{E}(X))(Y-\mathbb{E}(Y))) \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \underbrace{\mathbb{E}((X-\mathbb{E}(X))(Y-\mathbb{E}(Y)))}_{?}
\end{aligned}
$$

Covariance

Intuition:

A measure of how much X, Y change together.

Covariance

Intuition:

A measure of how much X, Y change together.

Covariance

For two jointly distributed real-valued random variables X, Y with finite second moments, the covariance is defined as

$$
\operatorname{Cov}(X, Y)=\mathbb{E}((X-\mathbb{E}(X))(Y-\mathbb{E}(Y)))
$$

Simplification:

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

Covariance

Properties:

- $\operatorname{Cov}(X, X)=\operatorname{Var}(X) \geq 0$;
- $\operatorname{Cov}(X, a)=0, \quad a$ is a constant;
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$;
- $\operatorname{Cov}(X+a, Y+b)=\operatorname{Cov}(X, Y)$;
- $\operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y)$.

Covariance

Properties:

- $\operatorname{Cov}(X, X)=\operatorname{Var}(X) \geq 0$;
- $\operatorname{Cov}(X, a)=0, \quad a$ is a constant;
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$;
- $\operatorname{Cov}(X+a, Y+b)=\operatorname{Cov}(X, Y)$;
- $\operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y)$.

Corollary about variance:

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

Covariance

Relate covariance to inner product:
Inner product (not rigorous)
Inner product is a operator from a vector space V to a field F (use \mathbb{R} here as an example): $<\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies:

- Symmetry: $\langle x, y\rangle=\langle y, x\rangle$;
- Linearity in the first argument: $\langle a x+b y, z\rangle=a\langle x, z\rangle+b<y, z\rangle$;
- Positive-definiteness: $\langle x, x\rangle \geq 0$, and $\langle x, x\rangle=0 \Leftrightarrow x=0$

Covariance

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use \mathbb{R} here as an example): $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies:

- Symmetry: $\langle x, y\rangle=\langle y, x\rangle$;
- Linearity in the first argument: $\langle a x+b y, z\rangle=a\langle x, z\rangle+b\langle y, z\rangle$;
- Positive-definiteness: $\langle x, x\rangle \geq 0$, and $\langle x, x\rangle=0 \Leftrightarrow x=0$

Remark:

Covariance defines an inner product over the quotient vector space obtained by taking the subspace of random variables with finite second moment and identifying any two that differ by a constant.

Covariance

Properties inherited from the inner product space
Recall in Euclidean vector space:

- $\langle x, y\rangle=x^{\top} y=\sum_{i=1}^{n} x_{i} y_{i}$;
- $\|x\|_{2}=\sqrt{\langle x, x\rangle}$;
- $\langle x, y\rangle=\|x\|_{2} \cdot\|y\|_{2} \cos (\theta)$.

Respectively:

- $\langle X, Y\rangle=\operatorname{Cov}(X, Y)$;
- $\|X\|=\sqrt{\operatorname{Var}(X)}$;

Covariance

A substitute for $\cos (\theta)$:

Correlation

For two jointly distributed real-valued random variables X, Y with finite second moments, the correlation is defined as

$$
\operatorname{Corr}(X, Y)=\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}
$$

Covariance

A substitute for $\cos (\theta)$:

Correlation

For two jointly distributed real-valued random variables X, Y with finite second moments, the correlation is defined as

$$
\operatorname{Corr}(X, Y)=\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}
$$

Uncorrelatedness:

$$
X, Y \text { uncorrelated } \quad \Leftrightarrow \quad \operatorname{Corr}(X, Y)=0
$$

Covariance

Cauchy-Schwarz inequality

$$
|\operatorname{Cov}(X, Y)| \leq \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)} .
$$

Proof:

Covariance

Uncorrelatedness and Independence:

Observe the relationship:

$$
\operatorname{Corr}(X, Y)=0 \quad \Leftrightarrow \quad \operatorname{Cov}(X, Y)=0 \quad \Leftrightarrow \quad \mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(X)
$$

Covariance

Uncorrelatedness and Independence:

Observe the relationship:

$$
\operatorname{Corr}(X, Y)=0 \Leftrightarrow \operatorname{Cov}(X, Y)=0 \quad \Leftrightarrow \quad \mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(X)
$$

Conclusions:

- Independence \Rightarrow Uncorrelatedness
- Uncorrelatedness \nRightarrow Independence

Remark:

Independence is a very strong assumption/property on the distribution.

Covariance

Special case: multivariate normal

Multivariate normal

A k-dimensional random vector $\mathbf{X}=\left(X_{1}, X_{2}, \cdots, X_{k}\right)^{\top}$ follows a multivariate normal distribution $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if

$$
f_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)=\frac{\exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)}{\sqrt{(2 \pi)^{k}|\boldsymbol{\Sigma}|}}
$$

where $\boldsymbol{\mu}=\mathbb{E}[\mathbf{X}]=\left(\mathbb{E}\left[X_{1}\right], \mathbb{E}\left[X_{2}\right], \ldots, \mathbb{E}\left[X_{k}\right]\right)^{\top}$, and $[\boldsymbol{\Sigma}]_{i, j}=\Sigma_{i, j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$.

Observation:

The distribution is decided by the covariance structure.

Covariance

$$
\begin{aligned}
X_{i}, i=1, \cdots k \text { independent } & \Leftrightarrow f_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)=\prod_{i=1}^{k} f_{X_{i}}\left(x_{i}\right) \\
& \Leftrightarrow \boldsymbol{\Sigma}=I_{k} \Leftrightarrow \operatorname{Cov}\left(X_{i}, X_{j}\right)=0, i \neq j
\end{aligned}
$$

Example:

- $\operatorname{Corr}(X, Y)=0$

Covariance

$$
\begin{aligned}
X_{i}, i=1, \cdots k \text { independent } & \Leftrightarrow f_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)=\prod_{i=1}^{k} f_{X_{i}}\left(x_{i}\right) \\
& \Leftrightarrow \boldsymbol{\Sigma}=I_{k} \Leftrightarrow \operatorname{Cov}\left(X_{i}, X_{j}\right)=0, i \neq j
\end{aligned}
$$

Example:

- $\operatorname{Corr}(X, Y)=0.7$

Covariance

$$
\begin{aligned}
X_{i}, i=1, \cdots k \text { independent } & \Leftrightarrow f_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)=\prod_{i=1}^{k} f_{X_{i}}\left(x_{i}\right) \\
& \Leftrightarrow \boldsymbol{\Sigma}=I_{k} \Leftrightarrow \operatorname{Cov}\left(X_{i}, X_{j}\right)=0, i \neq j
\end{aligned}
$$

Example:

- $\operatorname{Corr}(X, Y)=-0.7$

Concentration

Measures of a distribution:

- $\mathbb{E}\left(X^{k}\right), \mathbb{E}(X), \operatorname{Var}(X)$;
- $\operatorname{Cov}(X, Y)$ and $\operatorname{Corr}(X, Y)$.

Concentration

Measures of a distribution:

- $\mathbb{E}\left(X^{k}\right), \mathbb{E}(X), \operatorname{Var}(X)$;
- $\operatorname{Cov}(X, Y)$ and $\operatorname{Corr}(X, Y)$.

Tail probability: $\mathbf{P}(|X|>t)$

Figure: Probability density function of $\mathcal{N}(0,1)$

Concentration

Concentration inequalities:

- Markov inequality
- Chebyshev inequality
- Chernoff bounds

Concentration

Concentration inequalities:

- Markov inequality
- Chebyshev inequality
- Chernoff bounds

Markov inequality

Let X be a random variable that is non-negative (almost surely). Then, for every constant $a>0$,

$$
\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}
$$

Proof:

Concentration

Markov inequality (continued)

Let X be a random variable, then for every constant $a>0$,

$$
\mathbb{P}(|X| \geq a) \leq \frac{\mathbb{E}(|X|)}{a} .
$$

A more general conclusion:

Markov inequality (continued)

Let X be a random variable, if $\Phi(x)$ is monotonically increasing on $[0, \infty)$, then for every constant $a>0$,

$$
\mathbb{P}(|X| \geq a)=\mathbb{P}(\Phi(|X|) \geq \Phi(a)) \leq \frac{\mathbb{E}(\Phi(|X|))}{\Phi(a)}
$$

Concentration

Chebyshev inequality

Let X be a random variable with finite expectation $\mathbb{E}(X)$ and variance $\operatorname{Var}(X)$, then for every constant $a>0$,

$$
\mathbb{P}(|X-\mathbb{E}(X)| \geq a) \leq \frac{\operatorname{Var}(X)}{a^{2}}
$$

or equivalently,

$$
\mathbb{P}(|X-\mathbb{E}(X)| \geq a \sqrt{\operatorname{Var}(X)}) \leq \frac{1}{a^{2}}
$$

Example:

Take $a=2$,

$$
\mathbb{P}(|X-\mathbb{E}(X)| \geq 2 \sqrt{\operatorname{Var}(X)}) \leq \frac{1}{4}
$$

Concentration

Chernoff bound (general)

Let X be a random variable, then for $t \geq 0$,

$$
\mathbb{P}(X \geq a)=\mathbb{P}\left(e^{t \cdot X} \geq e^{t \cdot a}\right) \leq \frac{\mathbb{E}\left[e^{t \cdot X}\right]}{e^{t \cdot a}}
$$

and

$$
\mathbb{P}(X \geq a) \leq \inf _{t \geq 0} \frac{\mathbb{E}\left[e^{t \cdot X}\right]}{e^{t \cdot a}}
$$

Remark:

This is especially useful when considering $X=\sum_{i=1}^{n} X_{i}$ with X_{i} 's independent,

$$
\mathbb{P}(X \geq a) \leq \inf _{t \geq 0} \frac{\mathbb{E}\left[\prod_{i} e^{t \cdot X_{i}}\right]}{e^{t \cdot a}}=\inf _{t \geq 0} e^{-t \cdot a} \prod_{i} \mathbb{E}\left[e^{t \cdot X_{i}}\right]
$$

Problem Set

Problem 1: Let

$$
f_{X, Y}(x, y)=\left\{\begin{array}{lc}
2 & 0 \leq y \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

compute $\operatorname{Cov}(X, Y)$.
Problem 2: For $X \sim \mathcal{N}(0,1)$, compute the Chernoff bound.

