Statistical Sciences

DoSS Summer Bootcamp Probability Module 6

Ichiro Hashimoto
University of Toronto

July 20, 2023

Recap

Learnt in last module:

- Moments
\triangleright Expectation, Raw moments, central moments
\triangleright Moment-generating functions
- Change-of-variables using MGF
\triangleright Gamma distribution
\triangleright Chi square distribution
- Conditional expectation
\triangleright Law of total expectation
\triangleright Law of total variance

Outline

- Covariance
\triangleright Covariance as an inner product
\triangleright Correlation
\triangleright Cauchy-Schwarz inequality
\triangleright Uncorrelatedness and Independence
- Concentration
\triangleright Markov's inequality
\triangleright Chebyshev's inequality
\triangleright Chernoff bounds

Covariance

Recall the property of expectation:

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

Covariance

Recall the property of expectation:

$$
\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)
$$

What about the variance?

$$
\begin{aligned}
\operatorname{Var}(X+Y) & =\mathbb{E}(X+Y-\mathbb{E}(X)-\mathbb{E}(Y))^{2} \\
& =\mathbb{E}(X-\mathbb{E}(X))^{2}+\mathbb{E}(Y-\mathbb{E}(Y))^{2}+2 \mathbb{E}((X-\mathbb{E}(X))(Y-\mathbb{E}(Y))) \\
& =\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \underbrace{\mathbb{E}((X-\mathbb{E}(X))(Y-\mathbb{E}(Y)))}_{?}
\end{aligned}
$$

Covariance

Intuition:

A measure of how much X, Y change together.

Covariance

Intuition:

A measure of how much X, Y change together.

Covariance

For two jointly distributed real-valued random variables X, Y with finite second moments, the covariance is defined as

$$
\operatorname{Cov}(X, Y)=\mathbb{E}((X-\mathbb{E}(X))(Y-\mathbb{E}(Y)))
$$

Simplification:

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)
$$

$$
\operatorname{Cov}(X, Y)=E X Y-E X E Y-E Y E X+E X F Y
$$

$$
=E X Y-E X \cdot E Y .
$$

Covariance

Properties:

- $\operatorname{Cov}(X, X)=\operatorname{Var}(X) \geq 0$;
- $\operatorname{Cov}(X, a)=0, \quad a$ is a constant;
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$;
- $\operatorname{Cov}(X+a, Y+b)=\operatorname{Cov}(X, Y) ; \rightarrow \operatorname{Cov}(X+c$, 在 $b)$
- $\operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y)$.

$$
=E(X-E X) \cdot(Y-E Y)=\operatorname{Cor}(X, Y)
$$

$$
\begin{aligned}
\operatorname{Cov}(a x, b y) & =E(a x-E a x)(b y-E b y) \\
& =a b E(X-E x)(y-E Y)=a b \operatorname{Cov}(X, Y)
\end{aligned}
$$

Covariance

Properties:

- $\operatorname{Cov}(X, X)=\operatorname{Var}(X) \geq 0$;
- $\operatorname{Cov}(X, a)=0, \quad a$ is a constant;
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$;
- $\operatorname{Cov}(X+a, Y+b)=\operatorname{Cov}(X, Y) ; \quad(i v)$
- $\operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y)$.

Corollary about variance:

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X) .
$$

$$
\operatorname{Var}(a x+b)^{(I)} \operatorname{Cov}(a x+b, a y+b) \stackrel{(I V)}{=} \operatorname{Cov}(a x, a x) \stackrel{(v)}{=} a^{2} \operatorname{Cor}(x, x)^{(2)}=a^{2} \operatorname{Va}(x)
$$

Covariance

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use \mathbb{R} here as an example): $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies:

- Symmetry: $\langle x, y\rangle=\langle y, x\rangle$;
- Linearity in the first argument: $\langle a x+b y, z\rangle=a\langle x, z\rangle+b\langle y, z\rangle$;
- Positive-definiteness: $\langle x, x\rangle \geq 0$, and $\langle x, x\rangle=0 \Leftrightarrow x=0$

square-integrable random vorictos.

Covariance

Relate covariance to inner product:

Inner product (not rigorous)

Inner product is a operator from a vector space V to a field F (use \mathbb{R} here as an example): $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ that satisfies:

- Symmetry: $\langle x, y\rangle=\langle y, x\rangle$;
- Linearity in the first argument: $\langle a x+b y, z\rangle=a\langle x, z\rangle+b\langle y, z\rangle$;
- Positive-definiteness: $\langle x, x\rangle \geq 0$, and $\langle x, x\rangle=0 \Leftrightarrow x=0$

Remark:

Covariance defines an inner product over the quotient vector space obtained by taking the subspace of random variables with finite second moment and identifying any two that differ by a constant.

Covariance

Properties inherited from the inner product space
Recall in Euclidean vector space:
$\bullet\langle x, y\rangle=x^{\top} y=\sum_{i=1}^{n} x_{i} y_{i}$;

- $\|x\|_{2}=\sqrt{\langle x, x\rangle}$;
- $\langle x, y\rangle=\|x\|_{2} \cdot\|y\|_{2} \cos (\theta)$.

Respectively:

- $\langle X, Y\rangle=\operatorname{Cov}(X, Y)$;
- $\|X\|=\sqrt{\operatorname{Var}(X)}$;

Covariance

A substitute for $\cos (\theta)$:

Correlation

For two jointly distributed real-valued random variables X, Y with finite second moments, the correlation is defined as

$$
\operatorname{Corr}(X, Y)=\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}
$$

Covariance

A substitute for $\cos (\theta)$:

Correlation

For two jointly distributed real-valued random variables X, Y with finite second moments, the correlation is defined as

$$
\operatorname{Corr}(X, Y)=\rho_{X Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}
$$

Uncorrelatedness:

$$
X, Y \text { uncorrelated } \quad \Leftrightarrow \quad \operatorname{Corr}(X, Y)=0
$$

Covariance $|a \times t h y|=\left|\left\langle\binom{ a}{b},\left(\begin{array}{l}(x)\end{array}\right)\right\rangle\right| \leqq \sqrt{a^{2}+b^{2}} \sqrt{x^{2}+y^{2}}$
Cauchy-Schwarz inequality

$$
|\operatorname{Cov}(X, Y)| \leq \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)} .
$$

Proof: Lh $X-E X=\tilde{x}, Y-E=\widetilde{Y}$.

$$
\begin{aligned}
0 \leqq E(\hat{x}+t \tilde{y})^{2} & =E \tilde{x}^{2}+2 t E \tilde{x} \cdot E Y+t^{2} E \tilde{Y}^{2} \\
& =\operatorname{Va}(x)+2 \operatorname{Cov}(x, Y) \cdot t+\operatorname{Va}(Y) f^{2} .
\end{aligned}
$$

This holds for an $t \in \mathbb{R}$,

$$
\begin{aligned}
D .14 & =\quad \operatorname{GV}(x, y)^{2}-\operatorname{Va}(x) \operatorname{Va}(y) \leqq 0 \\
& \therefore \quad \operatorname{Cov}(x, y)^{2} \leqq \operatorname{Va}(x) \operatorname{Vat}(x)
\end{aligned}
$$

Covariance

Uncorrelatedness and Independence:

Observe the relationship:

$$
\begin{aligned}
\operatorname{Corr}(X, Y)=0 \Leftrightarrow \operatorname{Cov}(X, Y)=0 & \Leftrightarrow \\
& \overbrace{\text { This can happen }}^{\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(X)} \\
& \text { when } X \text { and } Y \text { are indeperost }
\end{aligned}
$$

Covariance

Uncorrelatedness and Independence:

Observe the relationship:

$$
\operatorname{Corr}(X, Y)=0 \quad \Leftrightarrow \quad \operatorname{Cov}(X, Y)=0 \quad \Leftrightarrow \quad \mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(X)
$$

Conclusions:

- Independence \Rightarrow Uncorrelatedness
- Uncorrelatedness \nRightarrow Independence

Remark:

Independence is a very strong assumption/property on the distribution.

Covariance

Special case: multivariate normal

Multivariate normal

A k-dimensional random vector $\mathbf{X}=\left(X_{1}, X_{2}, \cdots, X_{k}\right)^{\top}$ follows a multivariate normal distribution $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if

$$
\text { mean } f_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)=\frac{\exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)}{\sqrt{(2 \pi)^{k}|\boldsymbol{\Sigma}|}}, \quad \sum \in \mathbb{R}^{\text {kx/2 }}
$$

where $\boldsymbol{\mu}=\mathbb{E}[\mathbf{X}]=\left(\mathbb{E}\left[X_{1}\right], \mathbb{E}\left[X_{2}\right], \ldots, \mathbb{E}\left[X_{k}\right]\right)^{\top}$, and $[\boldsymbol{\Sigma}]_{i, j}=\Sigma_{i, j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)$.

Observation:

$$
\Leftrightarrow \quad \Sigma=E(x-\mu)(x-\mu)^{\top}
$$

The distribution is decided by the covariance structure.

$$
f_{y}\left(x_{1} ;-, x_{2}\right)=(2 \pi)^{-\frac{h}{2}}|\operatorname{dat} \Sigma|^{-\frac{1}{2}} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)
$$

Nate \sum is symmetric matrix.
\Rightarrow Them exists on orthcyonal matrix V and dragonal $\Lambda=\left(\begin{array}{ccc}\lambda_{1}^{2} & & \\ & \ddots & 0 \\ 0 & & \\ 0 & \lambda_{d^{2}}^{2}\end{array}\right)$
when $\underbrace{\lambda_{i} \geqslant 0}_{\text {di }}\left(\begin{array}{c}\text { we ca sutive semi deffriter }\end{array}\right.$

Purther assme thet $\lambda_{i}>0$ (it ensumss \sum and $A t_{i}$ be invertithe)

$$
\text { S.t. } \quad \sum V=V \Delta \Leftrightarrow \underbrace{\sum: V \Delta V^{\top}}_{\text {spectrol deconposition of }}
$$ 5 mmatrit matrix.

$$
\begin{aligned}
& \Leftrightarrow \Sigma^{-1}=V \Lambda^{-1} V^{\top} \\
&(x-\mu)^{\top} \Sigma^{-1}(x-\mu)=(x-\mu)^{\top} V \Lambda^{-1} V^{\top}(x-\mu) \\
&=Z
\end{aligned}
$$

chaige variatles by $Z=V^{\top}(x-\mu)$

Note the Jacohian of $x \rightarrow z$ is 1 sive $|\operatorname{det} V|=1$.

Then for

$$
\begin{aligned}
& p(z)=p(x)=(2 \pi)^{-\frac{s}{2}}|\operatorname{dut} \Lambda|^{\frac{1}{2}} \operatorname{erp}\left[-\frac{1}{2} z^{\top} \Lambda^{-1} z\right] \\
&(\operatorname{dut} \Lambda|=|\operatorname{at} \Sigma| \\
& \text { due } \hbar|\operatorname{dut} v|=1
\end{aligned}
$$

$$
\text { Recall that } \Lambda=\left(\begin{array}{ccc}
\lambda_{1}^{2} & & 0 \\
0 & \ddots & \\
0 & \lambda_{2}^{2}
\end{array}\right) \text { r }
$$

$$
\text { So, } \begin{aligned}
p(z) & =(2 \pi)^{-\frac{\mu_{2}}{2}}\left|\prod_{i=1}^{\frac{k_{1}}{1}} \lambda_{c}^{2}\right|^{-\frac{1}{2}} \exp \left[-\sum_{i=1}^{s} \frac{z_{c}^{2}}{2 \lambda_{c}^{2}}\right] \\
& =\prod_{i=1}^{k}[\underbrace{\frac{1}{\sqrt{2 \pi} \lambda_{c}}}_{1-\text { dimensional normal }} \exp \left(-\frac{z_{c}^{2}}{2 \lambda_{c}^{2}}\right)
\end{aligned}
$$

Covariance

$$
\begin{aligned}
X_{i}, i=1, \cdots k \text { independent } & \Leftrightarrow f_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)=\prod_{i=1}^{k} f_{X_{i}}\left(x_{i}\right) \\
& \Leftrightarrow \boldsymbol{\Sigma}=I_{k} \Leftrightarrow \operatorname{Cov}\left(X_{i}, X_{j}\right)=0, i \neq j
\end{aligned}
$$

Example:

- $\operatorname{Corr}(X, Y)=0$

Covariance

$$
\begin{aligned}
X_{i}, i=1, \cdots k \text { independent } & \Leftrightarrow f_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)=\prod_{i=1}^{k} f_{X_{i}}\left(x_{i}\right) \\
& \Leftrightarrow \boldsymbol{\Sigma}=I_{k} \Leftrightarrow \operatorname{Cov}\left(X_{i}, X_{j}\right)=0, i \neq j
\end{aligned}
$$

Example:

- $\operatorname{Corr}(X, Y)=0.7$

Covariance

$$
\begin{aligned}
X_{i}, i=1, \cdots k \text { independent } & \Leftrightarrow f_{\mathbf{X}}\left(x_{1}, \ldots, x_{k}\right)=\prod_{i=1}^{k} f_{X_{i}}\left(x_{i}\right) \\
& \Leftrightarrow \boldsymbol{\Sigma}=I_{k} \Leftrightarrow \operatorname{Cov}\left(X_{i}, X_{j}\right)=0, i \neq j
\end{aligned}
$$

Example:

- $\operatorname{Corr}(X, Y)=-0.7$

Concentration

Measures of a distribution:

- $\mathbb{E}\left(X^{k}\right), \mathbb{E}(X), \operatorname{Var}(X)$;
- $\operatorname{Cov}(X, Y)$ and $\operatorname{Corr}(X, Y)$.

Concentration

Measures of a distribution:

- $\mathbb{E}\left(X^{k}\right), \mathbb{E}(X), \operatorname{Var}(X)$;
- $\operatorname{Cov}(X, Y)$ and $\operatorname{Corr}(X, Y)$.

Tail probability: $\mathbf{P}(|X|>t)$

Figure: Probability density function of $\mathcal{N}(0,1)$

Concentration

Concentration inequalities:

- Markov inequality
- Chebyshev inequality
- Chernoff bounds

Concentration

Concentration inequalities:

- Markov inequality
- Chebyshev inequality
- Chernoff bounds

Markov inequality

Let X be a random variable that is non-negative (almost surely). Then, for every constant $a>0$,

$$
\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}
$$

Proof:

$$
\begin{aligned}
& \text { We use menstonicity of eqpedtatiom,i.e. } \\
& i f \geqslant \neq 1, \quad \neq x=1
\end{aligned}
$$

$$
Y=a \mathbb{K}[X \geq a]
$$

The $x ? 7$
S. EXZET

$$
\begin{aligned}
& =a E \mathbb{E}[x z a\} \\
& =a \mathbb{P}(x z a)
\end{aligned}
$$

Sine $a>0, \mathbb{P}(X \neq a) \leqq \frac{E X}{a}$

Concentration

Markov inequality (continued)

Let X be a random variable, then for every constant $a>0$,

$$
\mathbb{P}(|X| \geq a) \leq \frac{\mathbb{E}(|X|)}{a}
$$

A more general conclusion:

Markov inequality (continued)

Let X be a random variable, if $\Phi(x)$ is monotonically increasing on $[0, \infty)$, then for every constant $a>0$,

$$
\mathbb{P}(|X| \geq a) \cong \mathbb{P}(\Phi(|X|) \geq \Phi(a)) \subseteq \frac{\mathbb{E}(\Phi(|X|))}{\Phi(a)}
$$

due te Morkon dinequality

Concentration

Chebyshev inequality

Let X be a random variable with finite expectation $\mathbb{E}(X)$ and variance $\operatorname{Var}(X)$, then for every constant $a>0$,

$$
\mathbb{P}(|X-\mathbb{E}(X)| \geq a) \leq \frac{\operatorname{Var}(X)}{a^{2}}
$$

or equivalently,

$$
\mathbb{P}(|X-\mathbb{E}(X)| \geq a \sqrt{\operatorname{Var}(X)}) \leq \frac{1}{a^{2}}
$$

Example:

Take $a=2$,

$$
\mathbb{P}(|X-\mathbb{E}(X)| \geq 2 \sqrt{\operatorname{Var}(X)}) \leq \frac{1}{4}
$$

We can show Chebyitur inequality by appling Martoor c'resuality with X repkan hy $X-E X$ al $\phi(x)=x^{2}$.

Concentration

Chernoff bound (general)

Let X be a random variable, then for $t>0$,
Marker mequalty

$$
\mathbb{P}(X \geq a) \bigoplus \mathbb{P}\left(e^{t \cdot X} \geq e^{t \cdot a}\right) \in \frac{\mathbb{E}\left[e^{t \cdot X}\right]}{e^{t \cdot a}}
$$

$$
\mathbb{P}(X \geq a) \leq \inf _{t \geq 0} \frac{\mathbb{E}\left[e^{t \cdot x}\right]}{e^{t \cdot a}} .
$$

Remark:

minimum of RHS.

This is especially useful when considering $X=\sum_{i=1}^{n} X_{i}$ with X_{i} 's independent,

$$
\mathbb{P}(X \geq a) \leq \inf _{t \geq 0} \frac{\mathbb{E}\left[\prod_{i} e^{t \cdot X_{i}}\right]}{e^{t \cdot a}}=\inf _{t \geq 0} e^{-t \cdot a} \underbrace{\prod_{i} \mathbb{E}\left[e^{t \cdot X_{i}}\right]}
$$

In particular, if $X_{1}, \cdots, X_{n} \stackrel{\text { i.d.d }}{\sim} Z$

$$
\mathbb{P}(x \geq a)<\inf _{t \rightarrow 0}\left(E\left[e^{t z}\right]\right)^{n} / e^{t-a}
$$

e.9.)

$$
\begin{aligned}
& X_{i} \stackrel{i L A}{\sim} \operatorname{Bern}(1 / 2) \\
& E\left[e^{t \cdot x_{c}}\right]=\frac{e^{t}+e^{-t}}{2} \\
& \text { RHS of Charnsff bual }=e^{-t a} \cdot\left(\frac{e^{t}+e^{-t}}{2}\right)^{n \text {. }} \\
& \text { can fur minaman ols } \\
& \text { is differtiaty with } t \text {. }
\end{aligned}
$$

Problem Set

Problem 1: Let

$$
f_{X, Y}(x, y)=\left\{\begin{array}{lc}
2 & 0 \leq y \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

compute $\operatorname{Cov}(X, Y)$.
Problem 2: For $X \sim \mathcal{N}(0,1)$, compute the Chernoff bound.

