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Recap

Learnt in last module:

• Moments
! Expectation, Raw moments, central moments
! Moment-generating functions

• Change-of-variables using MGF
! Gamma distribution
! Chi square distribution

• Conditional expectation
! Law of total expectation
! Law of total variance
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Outline

• Covariance
! Covariance as an inner product
! Correlation
! Cauchy-Schwarz inequality
! Uncorrelatedness and Independence

• Concentration
! Markov’s inequality
! Chebyshev’s inequality
! Chernoff bounds
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Covariance

Recall the property of expectation:

E(X + Y) = E(X) + E(Y).

What about the variance?

Var(X + Y) = E(X + Y − E(X)− E(Y))2

= E(X − E(X))2 + E(Y − E(Y))2 + 2E((X − E(X))(Y − E(Y)))
= Var(X) + Var(Y) + 2E((X − E(X))(Y − E(Y)))︸ ︷︷ ︸

?
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Covariance
Intuition:
A measure of how much X,Y change together.

Covariance
For two jointly distributed real-valued random variables X,Y with finite second
moments, the covariance is defined as

Cov(X,Y) = E((X − E(X))(Y − E(Y))).

Simplification:
Cov(X,Y) = E(XY)− E(X)E(Y).
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Covariance

Properties:
• Cov(X,X) = Var(X) ≥ 0;
• Cov(X, a) = 0, a is a constant;
• Cov(X,Y) = Cov(Y,X);
• Cov(X + a,Y + b) = Cov(X,Y);
• Cov(aX, bY) = abCov(X,Y).

Corollary about variance:

Var(aX + b) = a2Var(X).
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Covariance

Relate covariance to inner product:

Inner product (not rigorous)
Inner product is a operator from a vector space V to a field F (use R here as an
example): < ·, · >: V × V → R that satisfies:

• Symmetry: < x, y >=< y, x >;
• Linearity in the first argument: < ax + by, z >= a < x, z > +b < y, z >;
• Positive-definiteness: < x, x >≥ 0, and < x, x >= 0 ⇔ x = 0

Remark:
Covariance defines an inner product over the quotient vector space obtained by taking
the subspace of random variables with finite second moment and identifying any two
that differ by a constant.

July 20, 2023 7 / 1

v =

lorsquare-integrable random variesthe



Covariance

Relate covariance to inner product:

Inner product (not rigorous)
Inner product is a operator from a vector space V to a field F (use R here as an
example): < ·, · >: V × V → R that satisfies:

• Symmetry: < x, y >=< y, x >;
• Linearity in the first argument: < ax + by, z >= a < x, z > +b < y, z >;
• Positive-definiteness: < x, x >≥ 0, and < x, x >= 0 ⇔ x = 0

Remark:
Covariance defines an inner product over the quotient vector space obtained by taking
the subspace of random variables with finite second moment and identifying any two
that differ by a constant.

July 20, 2023 7 / 1



Covariance

Properties inherited from the inner product space

Recall in Euclidean vector space:
• < x, y >= x!y =

∑n
i=1 xiyi;

• ||x||2 =
√
< x, x >;

• < x, y >= ||x||2 · ||y||2 cos(θ).

Respectively:
• < X,Y >= Cov(X,Y);
• ||X|| =

√
Var(X);

July 20, 2023 8 / 1

- -x,27
cost&ne AXIle (188112.

ne



Covariance

A substitute for cos(θ):

Correlation
For two jointly distributed real-valued random variables X,Y with finite second
moments, the correlation is defined as

Corr(X,Y) = ρXY =
Cov(X,Y)√

Var(X) · Var(Y)
.

Uncorrelatedness:

X,Y uncorrelated ⇔ Corr(X,Y) = 0.
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Covariance
Cauchy-Schwarz inequality

|Cov(X,Y)| ≤
√

Var(X)Var(Y).

Proof:
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Covariance

Uncorrelatedness and Independence:

Observe the relationship:

Corr(X,Y) = 0 ⇔ Cov(X,Y) = 0 ⇔ E(XY) = E(X)E(X)

Conclusions:

• Independence ⇒ Uncorrelatedness
• Uncorrelatedness )=⇒ Independence

Remark:
Independence is a very strong assumption/property on the distribution.
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Covariance

Special case: multivariate normal

Multivariate normal
A k-dimensional random vector X = (X1,X2, · · · ,Xk)! follows a multivariate normal
distribution X ∼ N (µ,Σ), if

fX(x1, . . . , xk) =
exp

(
−1

2(x − µ)TΣ−1(x − µ)
)

√
(2π)k|Σ|

,

where µ = E[X] = (E[X1],E[X2], . . . ,E[Xk])!, and [Σ]i,j = Σi,j = Cov(Xi,Xj).

Observation:
The distribution is decided by the covariance structure.
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Covariance
Xi, i = 1, · · · k independent ⇔ fX(x1, . . . , xk) =

k∏

i=1
fXi(xi)

⇔ Σ = Ik ⇔ Cov(Xi,Xj) = 0, i )= j.
Example:

• Corr(X,Y) = 0
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Concentration
Measures of a distribution:

• E(Xk), E(X),Var(X);
• Cov(X,Y) and Corr(X,Y).

Tail probability: P(|X| > t)

−3 −2 0 2 3
x

f(x
)

Figure: Probability density function of N (0, 1)
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Concentration
Concentration inequalities:

• Markov inequality
• Chebyshev inequality
• Chernoff bounds

Markov inequality
Let X be a random variable that is non-negative (almost surely). Then, for every
constant a > 0,

P(X ≥ a) ≤ E(X)
a .

Proof:
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Concentration

Markov inequality (continued)
Let X be a random variable, then for every constant a > 0,

P(|X| ≥ a) ≤ E(|X|)
a .

A more general conclusion:

Markov inequality (continued)
Let X be a random variable, if Φ(x) is monotonically increasing on [0,∞), then for
every constant a > 0,

P(|X| ≥ a) = P(Φ(|X|) ≥ Φ(a)) ≤ E(Φ(|X|))
Φ(a) .
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Concentration

Chebyshev inequality
Let X be a random variable with finite expectation E(X) and variance Var(X), then for
every constant a > 0,

P(|X − E(X)| ≥ a) ≤ Var(X)
a2 ,

or equivalently,
P(|X − E(X)| ≥ a

√
Var(X)) ≤ 1

a2 .

Example:
Take a = 2,

P(|X − E(X)| ≥ 2
√

Var(X)) ≤ 1
4 .
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Concentration
Chernoff bound (general)
Let X be a random variable, then for t ≥ 0,

P(X ≥ a) = P(et·X ≥ et·a) ≤
E
[
et·X]

et·a ,

and
P(X ≥ a) ≤ inf

t≥0

E
[
et·X]

et·a .

Remark:
This is especially useful when considering X =

∑n
i=1 Xi with Xi’s independent,

P(X ≥ a) ≤ inf
t≥0

E
[∏

i et·Xi
]

et·a = inf
t≥0

e−t·a ∏

i
E
[
et·Xi

]
.
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Problem Set

Problem 1: Let
fX,Y(x, y) =

{
2 0 ≤ y ≤ x ≤ 1
0 otherwise

,

compute Cov(X,Y).
Problem 2: For X ∼ N (0, 1), compute the Chernoff bound.
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