

Statistical Sciences

DoSS Summer Bootcamp Probability Module 7

Ichiro Hashimoto

University of Toronto

July 24, 2023

Recap

Learnt in last module:

• Covariance

- ▷ Covariance as an inner product
- ▷ Correlation
- Cauchy-Schwarz inequality
- ▷ Uncorrelatedness and Independence
- Concentration
 - ▷ Markov's inequality
 - ▷ Chebyshev's inequality
 - Chernoff bounds

Outline

- Stochastic convergence
 - \triangleright Convergence in distribution
 - ▷ Convergence in probability
 - Convergence almost surely
 - \triangleright Convergence in L^p
 - Relationship between convergences

Recall: Convergence

Convergence of a sequence of numbers

A sequence a_1, a_2, \cdots converges to a limit *a* if

 $\lim_{n\to\infty}a_n=a.$

That is, for any $\epsilon > 0$, there exists an $N(\epsilon)$ such that

 $|a_n - a| < \epsilon, \quad \forall n > N(\epsilon).$

Recall: Convergence

Convergence of a sequence of numbers

A sequence a_1, a_2, \cdots converges to a limit *a* if

 $\lim_{n\to\infty}a_n=a.$

That is, for any $\epsilon > 0$, there exists an $N(\epsilon)$ such that $a_n is \ dose \ \epsilon \ a_{by} \epsilon$ $|a_n - a| < \epsilon$, $\forall n > N(\epsilon)$. when m is sufficiently large

Example: $a_n = \frac{1}{n}$, $\forall \epsilon > 0$, take $N(\epsilon) = \lceil \frac{1}{\epsilon} \rceil$, then for $n > N(\epsilon)$,

$$|a_n-0|=a_n<\epsilon,\quad \lim_{n\to\infty}a_n=0.$$

<ロト < 部 > < 注 > く 注 > 注 の Q で July 24, 2023 4/1

- Capture the property of a series as $n \to \infty$;
- The limit is something where the series concentrate for large *n*;
- $|a_n a|$ quantifies the closeness of the series and the limit.

Observation: closeness of random variables

Sample mean of i.i.d. random variables

For i.i.d. random variables X_i , $i = 1, \dots, n$ with $\mathbb{E}(X_i) = \mu$, $Var(X_i) = \sigma^2$, then for the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

 $\mathbb{E}(\bar{X}) = \mu, \quad Var(\bar{X}) = \frac{\sigma^2}{r}.$

Proof:

 $E\overline{\chi} = E\left(\frac{1}{2}\sum_{i=1}^{n}\chi_{i}\right) = \frac{1}{m}\sum_{i=1}^{n}E\chi_{i} = \frac{1}{m}\sum_{i=1}^{n}M=M.$ $V_{ar}(\overline{\chi}) = E(\overline{\chi} - \mu)^2 = E(\overline{\xi} + \chi_{i} - \mu)^2$

$$= F\left(\frac{1}{n}\sum_{\alpha}^{n}\left(X_{\alpha}-M\right)\right)^{2}.$$

$$= \frac{1}{m^{2}} F\left(\frac{1}{n}\left(X_{\alpha}-M\right)\right)^{2}.$$

$$= \frac{1}{m^{2}} F\left(\frac{1}{n}\left(X_{\alpha}-M\right)^{2}+\frac{1}{n^{2}}\left(X_{\alpha}-M\right)\left(X_{\alpha}-M\right)\right)$$

$$= \frac{1}{m^{2}}\prod_{\alpha}^{n}F\left(X_{\alpha}-M\right)^{2}+\frac{1}{m^{2}}\prod_{\alpha}^{n}F\left(X_{\alpha}-M\right)\left(X_{\alpha}-M\right)$$

$$= \frac{1}{m^{2}}\prod_{\alpha}^{n}F\left(X_{\alpha}-M\right)^{2}+\frac{1}{m^{2}}\prod_{\alpha}^{n}F\left(X_{\alpha}-M\right)\left(X_{\alpha}-M\right)$$

$$= \frac{1}{m^{2}}\prod_{\alpha}^{n}F\left(X_{\alpha}-M\right)^{2}+\frac{1}{m^{2}}\prod_{\alpha}^{n}F\left(X_{\alpha}-M\right)\cdot\frac{1}{n^{2}}F\left(X_{\alpha}-M\right)$$

$$= \frac{1}{m^{2}}\prod_{\alpha}^{n}F\left(X_{\alpha}-M\right)^{2}+\frac{1}{m^{2}}\prod_{\alpha}^{n}F\left(X_{\alpha}-M\right)\cdot\frac{1}{n^{2}}F\left(X_{\alpha}-M\right)$$

$$= \frac{1}{m^{2}}\prod_{\alpha}^{n}F\left(X_{\alpha}-M\right)^{2}+\frac{1}{m^{2}}\prod_{\alpha}^{n}F\left(X_{\alpha}-M\right)\cdot\frac{1}{n^{2}}F\left(X_{\alpha}-M\right)$$

$$= \frac{1}{m^{2}}\prod_{\alpha}^{n}F\left(X_{\alpha}-M\right)^{2}+\frac{1}{m^{2}}\prod_{\alpha}^{n}F\left(X_{\alpha}-M\right)\cdot\frac{1}{n^{2}}F\left(X_{\alpha}-M\right)$$

Example:

Further suppose X_i , $i = 1, \dots, n$ i.i.d. with distribution $\mathcal{N}(\mu, \sigma^2)$, then $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$, so we can draw the probability density plot of \bar{X} .

By the previous stide we know EX=M, Var(X): on?

In addressing when Xi are indepet normal, then

$$\sum_{i=1}^{n} X_i$$
 is also normally distributed.

□ ▶ < 클 ▶ < 클 ▶ < 클 ▶ 클 → Q @ July 24, 2023 7/1

Example:

Further suppose X_i , $i = 1, \dots, n$ i.i.d. with distribution $\mathcal{N}(\mu, \sigma^2)$, then $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$, so we can draw the probability density plot of \bar{X} .

Figure: Probability density curve of sample mean of normal distribution

□ ▶ < ⓓ ▶ < 볼 ▶ < 볼 ▶ 볼 ∽ < < July 24, 2023 7/1

Intuition:

- Series of numbers $a_n \Rightarrow$ Series of random variables X_n ;
- Limit $a \Rightarrow$ Limit X;
- How to quantify the closeness? $(|X_n X|?)$

Intuition:

- Series of numbers $a_n \Rightarrow$ Series of random variables X_n ;
- Limit $a \Rightarrow$ Limit X;
- How to quantify the closeness? $(|X_n X|?)$

Pointwise convergence / Sure convergence

Suppose random variables X_n and X are defined over the same probability space, then we say X_n converges to X pointwise if

$$\lim_{n\to\infty}X_n(\omega)=X(\omega), \ \forall \omega\in\Omega.$$

Intuition:

- Series of numbers $a_n \Rightarrow$ Series of random variables X_n ;
- Limit $a \Rightarrow$ Limit X;
- How to quantify the closeness? $(|X_n X|?)$

Pointwise convergence / Sure convergence

Suppose random variables X_n and X are defined over the same probability space, then we say X_n converges to X pointwise if

$$\lim_{n\to\infty}X_n(\omega)=X(\omega), \,\,\forall\omega\in\Omega.$$

Remark:

Incorporate probability measure in some sense.

UNIVERSITY OF TORONTO

Alternatives of describing the closeness:

- Utilize CDF: $F_{X_n}(x) F_X(x)$;
- Utilize probability of an event: $\mathbb{P}(|X_n X| > \epsilon)$;
- Utilize the probability over all ω : $\mathbb{P}(\lim_{n\to\infty} X_n(\omega) = X(\omega));$
- Utilize mean/moments: $\mathbb{E}|X_n X|^p$.

Stochastic Convergence using CDF to quantify closeness

Convergence in distribution

or weak convergence.

A sequence X_1, X_2, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if

$$\lim_{n\to\infty}F_n(x)=F(x),$$

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_n and X, respectively.

Notation:

$$\stackrel{d}{\to} X, \quad X_n \xrightarrow{\mathcal{D}} X, \quad X_n \Rightarrow X.$$

 X_n

Convergence in distribution

A sequence X_1, X_2, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if

$$\lim_{n\to\infty}F_n(x)=F(x),$$

July 24, 2023

10/1

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_n(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_n and X, respectively.

Notation:

$$X_n \xrightarrow{d} X, \quad X_n \xrightarrow{\mathcal{D}} X, \quad X_n \Rightarrow X.$$

Remark:

 X_n and X do not need to be defined on the same probability space.

.

2) This is the to -2 - N(0,1)Therefore $P(-2 \le 2) = P(2 \le x)$. $\frac{1}{1 + 2} P(X_{1} \le x) = P(2 \le x) = P(-2 \le x)$.

3) $S_{n} = \xi \sim N(0,1)$ $\mathbb{P}(\xi \neq \chi) = \mathbb{P}(2 \neq \chi)$

Convergence in probability

A sequence X_n of random variables converges in probability towards the random variable X if for all $\epsilon > 0$, $\lim_{n \to \infty} \mathbb{P}(|X_n - X| > \epsilon) = 0.$

Notation:
$$X_n \xrightarrow{p} X$$
, $X_n \xrightarrow{P} X$.

Remark:

 X_n and X need to be defined on the same probability space.

Examples:

• Let
$$X_n = Z + \frac{1}{n}$$
, where $Z \sim \mathcal{N}(0, 1)$, then $X_n \xrightarrow{P} Z$.
Proof:
Let $\forall_{\Sigma 20}$. $\left[\mathcal{P} \left(| X_n - 2 | > \varepsilon \right) = \left[\mathcal{P} \left(| -2 | > \varepsilon \right) = 0 \right] \right]$
Thus the mass $\left[\lim_{m \to \infty} \left[\mathcal{P} \left(| X_n - 2 | > \varepsilon \right) = 0 \right] \right]$
• Let $X_n = Z + Y_n$, where $Z \sim \mathcal{N}(0, 1)$, $\mathbb{E}(|Y_n|) = \frac{1}{n}$, then $X_n \xrightarrow{P} Z$.
Proof:
 $\left[\mathcal{P} \left(| X_n - 2 | > \varepsilon \right) = \left[\mathcal{P} \left(| Y_n | > \varepsilon \right) \right] \right] = \frac{1}{2} \left[\mathcal{P} \left(| X_n | = (m\varepsilon)^T - (m\varepsilon)^T \right] \right]$

almost always = a.a.

a.e.

Convergence almost surely

A sequence X_n of random variables converges almost surely or almost everywhere or with probability 1 or strongly towards X means that

6-9.

$$\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=\mathbb{P}\left(\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\right)=1.$$

pointurse.

Notation: $X_n \xrightarrow{a.s.} X_n$

Remark: X_n and X need to be defined on the same probability space.

□ ▷ < @ ▷ < 볼 ▷ < 볼 ▷ 볼 · ♡ Q @ July 24, 2023 14 / 1

Examples:

• Let
$$X_n = Z + \frac{1}{n}$$
, where $Z \sim \mathcal{N}(0, 1)$, then $X_n \xrightarrow{a.s.} Z$.

Proof:

• Let $X_n = Z + Y_n$, where $Z \sim \mathcal{N}(0,1)$, $\mathbb{E}(|Y_n|) = \frac{1}{n}$, do we have $X_n \xrightarrow{a.s.} Z$? **Proof:** No, it does not converge almost sumply.

to have
$$X_1 \xrightarrow{\alpha} S_2$$
, we must have $X_1 \xrightarrow{\alpha} S_2 = 0$.
However, there is a counter excepte.
 $R.g.$). $\Omega = (0,1)$. $P \cap U_{nif}(\Omega)$.
 $D \subseteq U_{nif}(\Omega)$.

$$Y_{n,m}(w) = \begin{cases} 1 & \text{if } W \in \left[\frac{m}{n}, \frac{mn}{n}\right] \\ 0 & \text{otherwise.} \end{cases}$$

For each m, we run m from 0 - m - 1So, the interval run all points on $\Omega = (0, 1)$. Thus, that means, for any point $W \in \Omega$., $\lim_{m \to \infty} Y_{1n}(W_{n})$ does not exist.

Convergence in L^p

A sequence $\{X_n\}$ of random variables converges in L_p to a random variable $X, p \ge 1$, if $\lim_{n \to \infty} \mathbb{E} |X_n - X|^p = 0$

Notation: $X_n \xrightarrow{L^p} X_n$

Remark: X_n and X need to be defined on the same probability space.

Examples:

• Let
$$X_n = Z + rac{1}{n}$$
, where $Z \sim \mathcal{N}(0,1)$, then $X_n \stackrel{L^p}{\longrightarrow} Z$.

Proof:

$$E(x_{n}-2)^{p} = E(2)^{p} = n^{-p} = 0$$

< □ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ≡ > □
 July 24, 2023

17/1

• Let
$$X_n = Z + Y_n$$
, where $Z \sim \mathcal{N}(0, 1)$, $\mathbb{E}(|Y_n|^p) = \frac{1}{n}$, then $X_n \xrightarrow{L^p} Z$.
Proof:
 $\mathbb{E}\left[|Y_n - 2||^p \in \mathbb{F}\left[|Y_n|^p \in \frac{1}{n} \longrightarrow 0\right]\right]$

Relationship between convergences (on complete probability space):

Figure: relationship between convergences

<ロ > < 合 > < 言 > < 言 > こ > < こ > へ (~) July 24, 2023 18/1

Highlights:

• Almost sure convergence implies convergence in probability:

$$X_n \xrightarrow{\text{a.s.}} X \Rightarrow X_n \xrightarrow{P} X;$$

• Convergence in probability implies convergence in distribution:

$$X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X;$$

• If X_n converges in distribution to a constant c, then X_n converges in probability to c:

$$X_n \stackrel{d}{\rightarrow} c \quad \Rightarrow \quad X_n \stackrel{P}{\rightarrow} c, \quad \text{provided } c \text{ is a constant.}$$

□ ▶ < ॑ ₽ ▶ < ≧ ▶ < ≧ ▶ ≧ ∽ Q ↔ July 24, 2023 19/1

Problem Set

Problem 1: Prove that on a complete probability space, if $X_n \xrightarrow{L^p} X$, then $X_n \xrightarrow{P} X$. (Hint: use Markov's inequality)

Problem 2: Let X_1, \dots, X_n be i.i.d. random variables with *Bernoulli*(*p*) distribution, and $X \sim Bernoulli(p)$ is defined on the same probability space, independent with X_i 's. Does X_n converge in probability to X?

Problem 3: Give an example where X_n converges in distribution to X, but not in probability.

