Statistical Sciences

DoSS Summer Bootcamp Probability Module 7

Ichiro Hashimoto

University of Toronto
July 24, 2023

Recap

Learnt in last module:

- Covariance
\triangleright Covariance as an inner product
\triangleright Correlation
\triangleright Cauchy-Schwarz inequality
\triangleright Uncorrelatedness and Independence
- Concentration
\triangleright Markov's inequality
\triangleright Chebyshev's inequality
\triangleright Chernoff bounds

Outline

- Stochastic convergence
\triangleright Convergence in distribution
\triangleright Convergence in probability
\triangleright Convergence almost surely
\triangleright Convergence in L^{p}
Δ Relationship between convergences

Stochastic Convergence

Recall: Convergence

Convergence of a sequence of numbers
A sequence a_{1}, a_{2}, \cdots converges to a limit a if

$$
\lim _{n \rightarrow \infty} a_{n}=a
$$

That is, for any $\epsilon>0$, there exists an $N(\epsilon)$ such that

$$
\left|a_{n}-a\right|<\epsilon, \quad \forall n>N(\epsilon) .
$$

Stochastic Convergence

Recall: Convergence

Convergence of a sequence of numbers
A sequence a_{1}, a_{2}, \cdots converges to a limit a if

$$
\lim _{n \rightarrow \infty} a_{n}=a
$$

That is, for any $\epsilon>0$, there exists an $N(\epsilon)$ such that

$$
\begin{aligned}
& a_{n} \text { is close } \varepsilon \text { a } b_{y} \varepsilon \\
& \left|a_{n}-a\right|<\epsilon, \quad \forall n>N(\epsilon) \text {. when } n \text { is suffraiatly large }
\end{aligned}
$$

Example: $a_{n}=\frac{1}{n}, \forall \epsilon>0$, take $N(\epsilon)=\left\lceil\frac{1}{\epsilon}\right\rceil$, then for $n>N(\epsilon)$,

$$
\left|a_{n}-0\right|=a_{n}<\epsilon, \quad \lim _{n \rightarrow \infty} a_{n}=0
$$

Stochastic Convergence

- Capture the property of a series as $n \rightarrow \infty$;
- The limit is something where the series concentrate for large n;
- $\left|a_{n}-a\right|$ quantifies the closeness of the series and the limit.

Stochastic Convergence

Observation: closeness of random variables
Sample mean of i.i.d. random variables
For i.i.d. random variables $X_{i}, i=1, \cdots, n$ with $\mathbb{E}\left(X_{i}\right)=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, then for the sample mean $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$,

$$
\mathbb{E}(\bar{X})=\mu, \quad \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}
$$

$$
\begin{aligned}
& \text { Proof: } E \bar{X}=E\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{n_{2} \text { inert }-f E}=\frac{1}{n} \sum_{i=1}^{n} E X_{i}=\frac{1}{n} \sum_{i=1}^{n} \mu=\mu \text {. } \\
& \operatorname{Var}(\bar{x})=E_{2}(\bar{x}-\mu)^{2}=E\left(\frac{1}{5} \sum_{i=1} x_{i}-\mu\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =E\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)\right)^{2} \\
& =\frac{1}{n^{2}} E\left(\sum_{i=1}^{n}\left(x_{i}-\mu\right)\right)^{2} \\
& =\frac{1}{n^{2}} E\left(\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}+\sum_{i=i}\left(x_{i}-\mu\right)\left(x_{j}-\mu\right)\right) \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} E\left(x_{i}-\mu\right)^{2}+\frac{1}{n^{2}} \sum_{i=i} \underbrace{E\left(x_{i}-\mu\right)\left(x_{i}-\mu\right)}_{i=1} \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} \frac{\operatorname{Var}\left(x_{c}\right)}{2 \sigma^{2}}+\frac{1}{n^{2}} \sum_{i=i} E\left(x_{i=-\mu}-E\left(x_{j}-\mu\right)\right. \\
& =\frac{n \sigma^{2}}{n^{2}}+0=0 \\
& =\frac{\sigma^{2}}{n} .
\end{aligned}
$$

Stochastic Convergence
Example:
Further suppose $X_{i}, i=1, \cdots, n$ i.i.d. with distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$, so we can draw the probability density plot of \bar{X}.

By the previous slide we know $E \bar{x}=\mu, \operatorname{Var}(\bar{x})=\frac{\sigma^{2}}{n}$.

In addition, when X_{i} are indepat normal, then $\sum_{i=1}^{n} x_{i}$ is also normally distributed.

Stochastic Convergence

Example:

Further suppose $X_{i}, i=1, \cdots, n$ i.i.d. with distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$, then $\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$, so we can draw the probability density plot of \bar{X}.

Figure: Probability density curve of sample mean of normal distribution

Stochastic Convergence

Intuition:

- Series of numbers $a_{n} \Rightarrow$ Series of random variables X_{n};
- Limit $a \quad \Rightarrow \quad$ Limit X;
- How to quantify the closeness? $\left(\left|X_{n}-X\right|\right.$? $)$

Stochastic Convergence

Intuition:

- Series of numbers $a_{n} \Rightarrow$ Series of random variables X_{n};
- Limit $a \quad \Rightarrow \quad$ Limit X;
- How to quantify the closeness? $\left(\left|X_{n}-X\right|\right.$? $)$

Pointwise convergence / Sure convergence

Suppose random variables X_{n} and X are defined over the same probability space, then we say X_{n} converges to X pointwise if

$$
\lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega), \underset{\text { for each point } w,}{ }
$$

Stochastic Convergence

Intuition:

- Series of numbers $a_{n} \Rightarrow$ Series of random variables X_{n};
- Limit $a \quad \Rightarrow \quad$ Limit X;
- How to quantify the closeness? $\left(\left|X_{n}-X\right|\right.$? $)$

Pointwise convergence / Sure convergence

Suppose random variables X_{n} and X are defined over the same probability space, then we say X_{n} converges to X pointwise if

$$
\lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega), \forall \omega \in \Omega
$$

Remark:
Incorporate probability measure in some sense.

Stochastic Convergence

Alternatives of describing the closeness:

- Utilize CDF: $F_{X_{n}}(x)-F_{X}(x)$;
- Utilize probability of an event: $\mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)$;
- Utilize the probability over all $\omega: \mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right)$;
- Utilize mean/moments: $\mathbb{E}\left|X_{n}-X\right|^{p}$.

Stochastic Convergence

Convergence in distribution

A sequence X_{1}, X_{2}, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if
or weak convergence.

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x)
$$

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_{n}(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_{n} and X, respectively.

Notation:

$X_{n} \xrightarrow{d} X, \quad X_{n} \xrightarrow{\mathcal{D}} X, \quad X_{n} \Rightarrow X$.

Stochastic Convergence

Convergence in distribution

A sequence X_{1}, X_{2}, \cdots of real-valued random variables is said to converge in distribution, or converge weakly to a random variable X if

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x)
$$

for every number $x \in \mathbb{R}$ at which $F(\cdot)$ is continuous. Here, $F_{n}(\cdot)$ and $F(\cdot)$ are the cumulative distribution functions of the random variables X_{n} and X, respectively.

Notation:
$X_{n} \xrightarrow{d} X, \quad X_{n} \xrightarrow{\mathcal{D}} X, \quad X_{n} \Rightarrow X$.
Remark:
X_{n} and X do not need to be defined on the same probability space.

Stochastic Convergence

Example:
Let $X_{n}=Z+\frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then
LaT Φ he CDF of Z.

- $X_{n} \xrightarrow{d} Z$,

Note that Φ is continuing.

- $X_{n} \xrightarrow{d}-Z$,
- $X_{n} \xrightarrow{d} Y, \underset{\sim}{\sim} \mathcal{N}(0,1)$.

Proof: hew random variable which could he indepent frown z

1) $\mathbb{P}\left(x_{n} \leqslant x\right)=\mathbb{P}\left(z+\frac{1}{4} \leqslant x\right)=\mathbb{P}\left(z \leqslant x-\frac{1}{n}\right)=\Phi\left(x-\frac{1}{n}\right)$

Sa \bar{q} is continues, $\lim _{n \rightarrow n} \Phi\left(x-\frac{1}{4}\right)=\Phi(x)=\mathbb{P}(z \leqq x)$
© $\begin{gathered}\text { Unverastr of } \\ \text { TORONTO }\end{gathered}$
So, $\quad \lim _{n \rightarrow \infty} P\left(x_{n} \leqslant x\right)=\mathbb{P}(z \leqq x) \quad \therefore x_{n} \xrightarrow{d} z$
July 24,2023
2) This is tue $t_{6}-Z \sim N(0,1)$

Therefore $\mathbb{P}(-z \Sigma x)=\mathbb{P}(z \Delta x)$.

$$
\therefore \quad \lim _{n \rightarrow 0} \mathbb{P}\left(x_{n} \leqslant x\right)=\mathbb{P}(z \leqslant x)=\mathbb{P}(-z \leq x)
$$

3).

$$
\begin{array}{ll}
\text { Sin } \quad y \sim N(0,1) \\
& \mathbb{P}(\zeta \leqq x)=\mathbb{P}(z 乞 x) .
\end{array}
$$

Stochastic Convergence

Convergence in probability
A sequence X_{n} of random variables converges in probability towards the random variable X if for all $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0 .
$$

Notation: $X_{n} \xrightarrow{p} X, \quad X_{n} \xrightarrow{P} X$.

Remark:

X_{n} and X need to be defined on the same probability space.

Stochastic Convergence
Examples:

- Let $X_{n}=Z+\frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then $X_{n} \xrightarrow{P} Z$.

Proof:
lat ${ }^{\forall} \varepsilon>0$.

$$
\mathbb{P}\left(\left|k_{n}-z\right| s \varepsilon\right)=\mathbb{P}\left(\frac{1}{n}>\varepsilon\right)=0 \text { if } n \geqslant \varepsilon^{-1} \text {. }
$$

That means $\lim _{n \rightarrow \infty} \mid P\left(\left|x_{n}-z\right|>c\right)=0$.

- Let $X_{n}=Z+Y_{n}$, where $Z \sim \mathcal{N}(0,1), \mathbb{E}\left(\left|Y_{n}\right|\right)=\frac{1}{n}$, then $X_{n} \xrightarrow{P} Z$.

Proof:
Markov inequality

$$
\begin{aligned}
\mathbb{P}\left(\left|X_{n}-Z\right|>\varepsilon\right)=\mathbb{P}\left(\left|Y_{n}\right|>\varepsilon\right) \leqq & \varepsilon^{-1} E\left(Y_{n} \mid=(n \varepsilon)^{-1}\right. \\
& \longrightarrow 0 \cos \sim \rightarrow 凶
\end{aligned}
$$

Stochastic convergence

Convergence almost surely

A sequence X_{n} of random variables converges almost surely or almost everywhere or with probability 1 or strongly towards X means that

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=\mathbb{P}\left(\omega \in \Omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right)=1 .
$$

porinturise.
Notation: $X_{n} \xrightarrow{\text { a.s. }} X$.
Remark:
X_{n} and X need to be defined on the same probability space.

Stochastic convergence
Examples:

- Let $X_{n}=Z+\frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then $X_{n} \xrightarrow{\text { a.s. }} Z$.

Proof:

$$
\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty}\left(z+\frac{1}{n}\right)=z+\lim _{n \rightarrow \infty} \frac{1}{n}=z
$$

- Let $X_{n}=Z+Y_{n}$, where $Z \sim \mathcal{N}(0,1), \mathbb{E}\left(\left|Y_{n}\right|\right)=\frac{1}{n}$, do we have $X_{n} \xrightarrow{\text { ass. }} Z$? Proof: N_{0}, it does net converge almost scantly.

To han $x_{n} \xrightarrow{\text { ar i }} Z$, we must has $Y_{4} \xrightarrow{c_{1} s_{j}} 0$.

Hoverer, them is a counter example.
l.g.). $\Omega:(0,1) \quad \mathbb{P} \wedge U_{n i} f(\Omega)$.

Define.

$$
Y_{n, m}(w)= \begin{cases}1 & \text { if } w \in\left[\frac{m}{n}, \frac{m-u}{n}\right) \\ 0 & \text { otherwise. }\end{cases}
$$

for $0 \leqq m<n-1 . \quad \therefore \mathbb{P}\left(X_{n, m}=1\right)=\frac{1}{n}$

So, $E Y_{n, m}=\frac{1}{n}$.

For each n, we rum M from $O \sim n-1$ So, the interval ran all points on $\Omega-(0,1)$.

Than, that mans, for any port $w \in \Omega$, $\lim _{n \rightarrow \infty} Y_{\ln }(b)$ dues not exist.

Stochastic convergence

Convergence in L^{p}
A sequence $\left\{X_{n}\right\}$ of random variables converges in L_{p} to a random variable $X, p \geq 1$, if

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left|X_{n}-X\right|^{p}=0
$$

$$
p>0
$$

Notation: $X_{n} \xrightarrow{L^{p}} X$.
Remark:
X_{n} and X need to be defined on the same probability space.

Stochastic convergence

Examples:

- Let $X_{n}=Z+\frac{1}{n}$, where $Z \sim \mathcal{N}(0,1)$, then $X_{n} \xrightarrow{L^{p}} Z$.

Proof:

$$
\begin{equation*}
E\left|x_{n}-z\right|^{p}=E\left(\frac{1}{r}\right)^{p}=n^{-p} \rightarrow \tag{0}
\end{equation*}
$$

- Let $X_{n}=Z+Y_{n}$, where $Z \sim \mathcal{N}(0,1), \mathbb{E}\left(\left|Y_{n}\right|^{p}\right)=\frac{1}{n}$, then $X_{n} \xrightarrow{L^{p}} Z$.

Proof:

$$
E\left|x_{n}-z\right|^{D}: E\left|\xi_{n}\right|^{p}=\frac{1}{n} \rightarrow 0
$$

Stochastic convergence

Relationship between convergences (on complete probability space):

Figure: relationship between convergences

Stochastic convergence

Highlights:

- Almost sure convergence implies convergence in probability:

$$
X_{n} \xrightarrow{\text { a.s. }} X \quad \Rightarrow \quad X_{n} \xrightarrow{P} X ;
$$

- Convergence in probability implies convergence in distribution:

$$
X_{n} \xrightarrow{P} X \quad \Rightarrow \quad X_{n} \xrightarrow{d} X ;
$$

- If X_{n} converges in distribution to a constant c, then X_{n} converges in probability to c:

$$
X_{n} \xrightarrow{d} c \Rightarrow X_{n} \xrightarrow{P} c, \quad \text { provided } c \text { is a constant. }
$$

Problem Set

Problem 1: Prove that on a complete probability space, if $X_{n} \xrightarrow{L^{p}} X$, then $X_{n} \xrightarrow{P} X$. (Hint: use Markov's inequality)

Problem 2: Let X_{1}, \cdots, X_{n} be i.i.d. random variables with $\operatorname{Bernoulli}(p)$ distribution, and $X \sim \operatorname{Bernoulli}(p)$ is defined on the same probability space, independent with X_{i} 's. Does X_{n} converge in probability to X ?

Problem 3: Give an example where X_{n} converges in distribution to X, but not in probability.

