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Recap

Learnt in last module:

e Covariance
> Covariance as an inner product
> Correlation
> Cauchy-Schwarz inequality
> Uncorrelatedness and Independence

e Concentration

> Markov's inequality
> Chebyshev's inequality
> Chernoff bounds
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Outline

® Stochastic convergence
> Convergence in distribution
> Convergence in probability
> Convergence almost surely
> Convergence in LP
> Relationship between convergences
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Stochastic Convergence

Recall: Convergence

Convergence of a sequence of numbers

A sequence aj, ap, - - - converges to a limit a if

lim a, = a.
n—o0
That is, for any € > 0, there exists an N(e) such that
/vv\_/v\ —_—
lan —a|l <€, Vn> N(e).
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Stochastic Convergence

Recall: Convergence

Convergence of a sequence of numbers

A sequence aj, ap, - - - converges to a limit a if

lim a, = a.
n—o0
That is, for any € > 0, there exists an N(e) such that
Qu is clese Abyi
(@ Vn > N(E) \/Ll“-’l A S Qﬂﬁ}a“d‘/f /Mj{
v

Example: a, = %, Ve > 0, take N(e) = [1], then for n > N(e),

lan— 0| =a,<e, lim a,=0.
n—oo
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Stochastic Convergence
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Stochastic Convergence

Observation: closeness of random variables

Sample mean of i.i.d. random variables

For i.i.d. random variables X;,i=1,---, n with E(X;) = p, Var(X;) = o2, then for the
sample mean X = 1377 X;,

Vor (X5 ( Roa) =g 4Ew Wj
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Stochastic Convergence

Example:
< 2
Further suppose X;,i=1,---,ni.id. with distribution N'(, 0?), then X ~ N (p, =),
so we can draw the probability density plot of X. j/’tw
B ,{{\ Teviows si*d-( wl F o~ \2)? M VﬁV(Y) 1 O -
7 T f i o / .
To clrdte, whe Yo gre ““"(‘["7 wor s | , Ahen
=
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Stochastic Convergence
Example:

Further suppose Xj,i=1,---,ni.i.d. with distribution N'(y,0?), then X ~ N (p, ‘7—,72)

so we can draw the probability density plot of X.

type

Figure: Probability density curve of sample mean of normal distribution
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Stochastic Convergence

Intuition:
® Series of numbers a, =  Series of random variables X;;
e Limta = LimitX
® How to quantify the closeness? (|X, — X|?)
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Stochastic Convergence

Intuition:
® Series of numbers a, =  Series of random variables X;;
e Limta = LimitX
® How to quantify the closeness? (|X, — X|?)

Pointwise convergence / Sure convergence

Suppose random variables X, and X are defined over the same probability space, then
we say X, converges to X pointwise if

ILm Xn(w) = X(w), Yw € Q.

~— \

c{:m’ ench /)m\/‘ l'\)/
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Stochastic Convergence

Intuition:
® Series of numbers a, =  Series of random variables X;;

e Limta = LimitX
® How to quantify the closeness? (|X, — X|?)

Pointwise convergence / Sure convergence
Suppose random variables X, and X are defined over the same probability space, then

we say X, converges to X pointwise if

ILm Xn(w) = X(w), Yw € Q.

Remark:
Incorporate probability measure in some sense.
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Stochastic Convergence

Alternatives of describing the closeness:
e Utilize CDF: Fx,(x) — Fx(x);
e Utilize probability of an event: P(|X, — X| > ¢);
e Utilize the probability over all w: P(lim,_ o Xp(w) = X(w));

e Utilize mean/moments: E|X, — X|P.
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4

Stochastic Convergence Nesy COF & fuantef, N

Convergence in distribution

A sequence X1, Xp, - -+ of real-valued random variables is said to converge in
distribution, or converge weakly to a random variable X if
~ — <
e owvergen(e. .

o werk oo lim Fn(x) = F(x),
n—o0
for every number x € R at which F(-) is continuous. Here, F,(-) and F(-) are the
cumulative distribution functions of the random variables X, and X, respectively.

Notation:
Xnng XngX, Xn:>X

~———
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Stochastic Convergence

Convergence in distribution

A sequence X1, Xp, - -+ of real-valued random variables is said to converge in
distribution, or converge weakly to a random variable X if

lim Fn(x) = F(x),

n—o0

for every number x € R at which F(-) is continuous. Here, F,(-) and F(-) are the
cumulative distribution functions of the random variables X, and X, respectively.

Notation:
Xnng X,,2>X, Xn:>X

Remark:
X, and X do not need to be defined on the same probability space.
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Stochastic Convergence

Example:
Let X, =Z+

where Z ~ N(0,1), then LT @ he CoF »§ 2
° Xni>Z, Mebe rt 7 CM«"(‘lmms
°« X, % -7

© X, %Y, Y~ N(0,0).

hew  ondo~ verrdhle
Proof:

\./[-\0[\ cot-(’A [11 M‘!}f.{f QC(cu\

2
D) P(¥% £%) = Pt 4x): P2 2x0)

-%)
{r—w\ 3—- P CCM”HHWR? (\‘u\ i(w-%\— ) - Z(‘(,ﬂ) - “-)(2
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3) ks i5 A % —2 ~ M(0)
Theebe [P (-2€1): p(22%)D

D e POGER) = (2 £ %) P (-2 Ew)
wko /

3) S~ X~ wmlod)

P(rex) = P(24x)
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Stochastic Convergence

Convergence in probability

A sequence X, of random variables converges in probability towards the random
~——

variable X if for all € > 0,

T lim P(|X, — X| > ¢) = 0.

n—o0

Notation: X, > X, X, 5 X

Remark:
X, and X need to be defined on the same probability space.
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Stochastic Convergence
Examples:

Proof:

® Let X, = Z+ 1, where Z~ N(0,1), then X, 2 Z
[t YE20.

(P((Yv&(')é‘,): [P(’,k?i) O ¥ /"lz‘ﬁhl.
Tt s L P(M02]>2) =00

* Let X, = Z+ Y, where Z~ N(0,1), E(|Y,|) = L, then X, & Z
Proof:

Mertov Mg o L‘o{7 y
PC(wr2028) = P(alr2) £ ¢ E(uls (m®
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Stochastic convergence
G

Convergence almost surely

A sequence X,, of random variables converges almost surely or almost everywhere or
. ape A—

with probability 1 or strongly towards X means that

NN—— N~

P(Iim X,,:X>:P(weQ:nan;OXn(w):X(w)):1.

n—o0

Fot“ffv‘i'f-c‘
Notation: X, == X.

Remark:
X, and X need to be defined on the same probability space.
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Stochastic convergence

Examples:
o Let X, =Z+ 1 where Z~ N(0,1), then X, 2> Z.
Proof:

low Yo [ (2¢5) « 24 (4= 2

WV AAve

® Let X, = Z+ ¥, where Z~ N(0,1), E(|Y,) = }, do we have X, 2% 27
Proof: Vo, tt does ~f CohevyL oyt 5uvrw(7.
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Stochastic convergence

Convergence in LP

A sequence {X,} of random variables converges in L, to a random variable X, p > 1, if
—_—

lim E|X,— X|P =0 920
n—o0

P
Notation: X, L—> X.

Remark:
Xn and X need to be defined on the same probability space.
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Stochastic convergence

Examples:
o Let X, = Z+ 1, where Z~ N(0,1), then X, — Z,

Proof:

Elwal”: E@ s n"5 o

o Let X, = Z+ Y, where Z~ N(0,1), E(|Y,|?) = 1, then X, = Z.
Proof:

E 2 gl =4 — 0

&
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Stochastic convergence

Relationship between convergences (on complete probability space):

L3 L
— = —
s>r>1
a.s. P d
— = —_— = —

Figure: relationship between convergences
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Stochastic convergence

Highlights:
® Almost sure convergence implies convergence in probability:
X, 25 X = X, B X

e Convergence in probability implies convergence in distribution:

X, Hx = x %4x

e |f X,, converges in distribution to a constant c, then X, converges in probability to
c
d P . .
X, —>c = X, — c provided cis a constant.
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Problem Set

Problem 1: Prove that on a complete probability space, if X, L, X, then X, Ax
(Hint: use Markov's inequality)

Problem 2: Let Xj,---, X, be i.i.d. random variables with Bernoulli(p) distribution,
and X ~ Bernoulli(p) is defined on the same probability space, independent with X;'s.
Does X, converge in probability to X?

Problem 3: Give an example where X, converges in distribution to X, but not in
probability.
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