

Statistical Sciences

# DoSS Summer Bootcamp Probability Module 8

Ichiro Hashimoto

University of Toronto

July 25, 2023

 □ ▶ < ⊡ ▶ < ≧ ▶ < ≧ ▶ < ≧ ▶ < ≧</td>
 > ○ へ ○

 July 25, 2023
 1/12

## Recap

#### Learnt in last module:

- Stochastic convergence
  - $\triangleright$  Convergence in distribution
  - Convergence in probability
  - Convergence almost surely
  - $\triangleright$  Convergence in  $L^p$
  - Relationship between convergences



## Outline

- Relationship between convergences and counterexamples
  - $\triangleright$  Monotonicity of  $L^p$  Convergence
  - $\triangleright$  L<sup>p</sup> convergence implies Convergence in Probability
  - $\triangleright\,$  a.s. Convergence implies Convergence in Probability
  - $\triangleright~$  Convergence in Probability implies Convergence in distribution



**Recall:** A random variable  $X \in L^p$  if  $||X||_{L^p} = (E|X|^p)^{1/p} < \infty$ .  $X_n \to X$  in  $L^p$  if  $\lim_{n\to\infty} ||X_n - X||_{L^p} = 0$ 

### Monotonicity of $L^p$ Convergence

If q > p > 0,  $L^q$  convergence implies  $L^p$  convergence



**Recall:** A random variable  $X \in L^p$  if  $||X||_{L^p} = (E|X|^p)^{1/p} < \infty$ .  $X_n \to X$  in  $L^p$  if  $\lim_{n\to\infty} ||X_n - X||_{L^p} = 0$ 

#### Monotonicity of $L^p$ Convergence

If q > p > 0,  $L^q$  convergence implies  $L^p$  convergence



**Recall:**  $X_n$  converges to X in probability if for any  $\epsilon > 0 \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$ .

 $L^p$  convergence implies Convergence in Probability

If  $X_n \to X$  in  $L^p$ , then  $X_n \to X$  in probability.



**Recall:**  $X_n$  converges to X in probability if for any  $\epsilon > 0 \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$ .

 $L^{p}$  convergence implies Convergence in Probability

If  $X_n \to X$  in  $L^p$ , then  $X_n \to X$  in probability.



**Recall:**  $X_n$  converges to X in probability if for any  $\epsilon > 0 \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$ .

a.s. Convergence implies Convergence in Probability

If  $X_n \to X$  almost surely, then  $X_n \to X$  in probability.



**Recall:**  $X_n$  converges to X in probability if for any  $\epsilon > 0 \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$ .

a.s. Convergence implies Convergence in Probability

If  $X_n \to X$  almost surely, then  $X_n \to X$  in probability.



**Recall:**  $X_n$  converges to X in distribution if for any continuity point x of  $P(X \le x)$ ,  $\lim_{n\to\infty} P(X_n \le x) = P(X \le x)$  holds.

Convergence in Probability implies Convergence in Distribution

If  $X_n \to X$  in probability, then  $X_n \to X$  in distribution.



**Recall:**  $X_n$  converges to X in distribution if for any continuity point x of  $P(X \le x)$ ,  $\lim_{n\to\infty} P(X_n \le x) = P(X \le x)$  holds.

Convergence in Probability implies Convergence in Distribution

If  $X_n \to X$  in probability, then  $X_n \to X$  in distribution.



**Recall:**  $X_n$  converges to X in distribution if for any continuity point x of  $P(X \le x)$ ,  $\lim_{n\to\infty} P(X_n \le x) = P(X \le x)$  holds.

Convergence in Probability implies Convergence in Distribution

If  $X_n \to X$  in probability, then  $X_n \to X$  in distribution.

Special case when the Converse holds:

