

Statistical Sciences

DoSS Summer Bootcamp Probability Module 8

Ichiro Hashimoto

University of Toronto

July 25, 2023

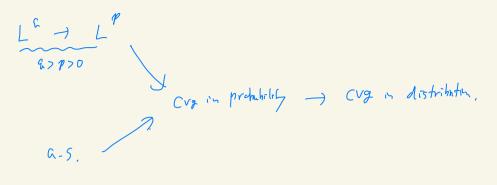
Recap

Learnt in last module:

- Stochastic convergence
 - \triangleright Convergence in distribution \rightarrow
 - ▷ Convergence in probability
 - ▷ Convergence almost surely
 - \triangleright Convergence in L^p

Relationship between convergences

 $\begin{array}{c} - \end{array} \\ \begin{array}{c} CDF \\ \hline \end{array} \\ \begin{array}{c} CLT \\ \hline \end{array} \\ \begin{array}{c} P((x_{n}-x(>z)) \rightarrow D & \text{for } cy \\ \hline \end{array} \\ \begin{array}{c} P((x_{n}-x) = l \\ \hline \end{array} \\ \begin{array}{c} \text{monor} \\ \end{array} \\ \begin{array}{c} F(x_{n}-x)^{p} \rightarrow 0 \end{array} \\ \end{array}$



Por all of these this converse fails.

Outline

- Relationship between convergences and counterexamples
 - \triangleright Monotonicity of L^p Convergence
 - \triangleright L^p convergence implies Convergence in Probability
 - $\triangleright\,$ a.s. Convergence implies Convergence in Probability
 - $\triangleright~$ Convergence in Probability implies Convergence in distribution

Recall: A random variable $X \in L^p$ if $||X||_{L^p} = (E|X|^p)^{1/p} < \infty$. $X_n \to X$ in L^p if $\lim_{n\to\infty} ||X_n - X||_{L^p} = 0$

Monotonicity of L^p Convergence

If q > p > 0, L^q convergence implies L^p convergence

Proof: Suppose
$$X_n \rightarrow X$$
 in L^{Q_n} . The $E[K_n-K]^{Q_n} \rightarrow 0$ as note
By Jensen's inequality with $Q(X)$: $(X|^{\frac{1}{p}}$ (conver when $Q > P > 0$),
 $E[X_n - X]^{Q_n} = E[[X_n - X]^{P_n}]^{\frac{1}{p}} \ge (E[X_n - X]^{(P_n)}]^{\frac{1}{p}}$
 $\therefore E[X_n - X]^{P_n} \le (E[X_n - X]^{P_n})^{\frac{1}{p}} \ge 0$

IDト 4 団 ト 4 필 ト 4 필 ト 2 つ Q ペ July 25, 2023 4/12

Recall: A random variable $X \in L^p$ if $||X||_{L^p} = (E|X|^p)^{1/p} < \infty$. $X_n \to X$ in L^p if $\lim_{n\to\infty} ||X_n - X||_{L^p} = 0$

Monotonicity of L^p Convergence

If q > p > 0, L^q convergence implies L^p convergence

Let
$$\mathbb{P}(X_n = n^{e_n}) = \frac{1}{n!} = [-\mathbb{P}(X_n = 0)]$$
.
Then $\mathbb{E}[X_n]^{\mathbb{P}} = n^{e_{n-1}}$, $\mathbb{E}[X_n]^{\mathbb{E}} = n^{e_{n-1}}$
Then \mathbb{P} we observe a site $a_{n-1} < 0 < a_{n-1}$,
we have $\mathbb{E}[X_n]^{\mathbb{P}} \to 0$ while $\mathbb{E}[X_n]^{\mathbb{E}} \to \infty$
That mass $X_n \to 0$ in \mathbb{P} but $X_n \to 0$ in $\mathbb{L}^{\mathbb{E}}$ fills.
 $A_{n-1} < 0 < a_{n-1} < a_{$

Recall: X_n converges to X in probability if for any $\epsilon > 0 \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$.

 L^p convergence implies Convergence in Probability

If $X_n \to X$ in L^p , then $X_n \to X$ in probability.

Proof:
$$\beta_{\gamma}$$
 Morkov $(x_{1}, \xi_{1}, \xi_{2})$
 $\left(P\left(|X_{n}-X| > \varepsilon \right) - P\left(|X_{1}-X|^{p} > \varepsilon^{p} \right) \leq \varepsilon^{-p} \in [X_{n}-X|^{p} \longrightarrow O$
 $b_{\gamma} \times x_{n} \to \chi_{n} \times L^{p}$

Recall: X_n converges to X in probability if for any $\epsilon > 0 \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$.

 L^{p} convergence implies Convergence in Probability

If $X_n \to X$ in L^p , then $X_n \to X$ in probability.

$$P(X_{1} = m^{1/p}) = \frac{1}{m} = (-P(X_{1} = 0))$$

$$P((X_{1} = 0) = \frac{1}{m} = (-P(X_{1} = 0))$$

$$P((X_{1} = 0) = \frac{1}{m} = P((X_{1} = 0) = 0)$$

$$F(X_{1} = 0) = 0$$

$$F(X_$$

However, $E(k_{k-0})^{p} = (m^{k_{p}})^{p} \cdot \frac{1}{m} + 0 = 1 \rightarrow 0$ So, Ku does not converge in L? .

Recall: X_n converges to X in probability if for any $\epsilon > 0 \lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$.

a.s. Convergence implies Convergence in Probability

If $X_n \to X$ almost surely, then $X_n \to X$ in probability.

Proof: Xn + X classt sundy inplies tht. for #200, almost sundy, 1Xn-K1>E for finitely many M. (sum as (Vn-K1<E for sufficiently layer). i.e. M(1Xn-X1>E for infinitely many m) =0 for VEDO.

Note that limsp [P(1Kn-X1>E) & [P(1Kn-X1>E for infinitely many n) m+100 = 0 ... lim [P((1Kn-X1>E)) = 0 ... [Im For Xn, X, the following are equivalent: (i) Xn-1 X is probability (i) For any subsequence of {Xs}, we can find further subsequence that converses to X as.

Recall: X_n converges to X in probability if for any $\epsilon > 0 \lim_{n\to\infty} P(|X_n - X| > \epsilon) = 0$.

a.s. Convergence implies Convergence in Probability

If $X_n \to X$ almost surely, then $X_n \to X$ in probability.

$$D = (0,1), \quad F = B(\Omega) \quad Bindersts, \quad |P \ cn \ \Omega \ by \quad anitorm \ measure.$$

$$i.e. \quad (P((a,b)) = b-a.$$

$$if \quad 0 < q < b < l.$$

$$Define \quad X_{u,m} \ (u) = \begin{cases} 1 & if \quad w \in (\frac{2n}{m}, \frac{2m+1}{m}] \\ 0 & ofter \ misz. \end{cases}$$

This makes
$$(P(X_{m,m}=1)=f_{m}=1-P(X_{m,m}))$$
.
So, $X_{m,m} \rightarrow 0$ is probability cs $m \rightarrow \infty$
But for each $\omega \in (0,1)$
 $X_{m,m}(\omega)=1$. for infinity many mm .
That means $X_{m,m}$ does not converge to 0
for any point on Q .

Recall: X_n converges to X in distribution if for any continuity point x of $P(X \le x)$, $\lim_{n\to\infty} P(X_n \le x) = P(X \le x)$ holds.

Convergence in Probability implies Convergence in Distribution

If $X_n \to X$ in probability, then $X_n \to X$ in distribution.

Proof:

Recall: X_n converges to X in distribution if for any continuity point x of $P(X \le x)$, $\lim_{n\to\infty} P(X_n \le x) = P(X \le x)$ holds.

Convergence in Probability implies Convergence in Distribution

If $X_n \to X$ in probability, then $X_n \to X$ in distribution.

Let
$$X \sim symmetric Bernoulli (\pm)$$

i.e. $(P(X = \pm 1) = \pm 2$
Define $Xn = (-1)^m X$
Then $Xn = d X$ for any $n = 5ince - X = d X$

That mas
$$X_{h} \rightarrow X$$
 in distribution.
However, for any odd m ,
 $p(X_{h} \mp X) = 1$ since $X_{h} = -X \mp X$
Therefore, X_{h} does not converge to X in probability.
Then $If X_{h} \rightarrow C$ is distribution, then
 $X_{h} \rightarrow C$ is probability.
Cor If the limit is constant, convergence in probability
and convergence is distribution are exampled.

Recall: X_n converges to X in distribution if for any continuity point x of $P(X \le x)$, $\lim_{n\to\infty} P(X_n \le x) = P(X \le x)$ holds.

Convergence in Probability implies Convergence in Distribution

If $X_n \to X$ in probability, then $X_n \to X$ in distribution.

Special case when the Converse holds:

